期刊文献+

模拟失重状态下大鼠心血管中枢组织基因组变化研究 被引量:1

Research on the Gene Changes of Rat Cardiovascular Central Tissue under Simulated Weightlessness
下载PDF
导出
摘要 目的拟通过动物模拟失重模型,研究模拟失重条件下心血管调节功能改变发生的分子机制。方法利用基因芯片技术,检测5例模拟失重大鼠和5例对照大鼠心血管中枢组织基因芯片的变化情况,从基因层面上揭示模拟失重心血管功能变化的实质。结果基因芯片结果显示:模拟失重状态导致心血管中枢部位ADP核糖基化因子样2(ADP-ribosylation factor-like2,Arl2)、孕酮和adipoQ受体家族成员Ⅳ(progestin and adipoQ receptor family member Ⅳ,paqr4)、丙酮酸脱氢酶激酶同工酶1(pyruvate dehydrogenasekinase,isozyme1,pdk1);促生长素抑制蛋白(somatostatin,sst)、跨膜蛋白酶(transmembraneprotease、tmprss5)、丝氨酸5(脊突蛋白)serine5(spinesin)发生了改变。结论失重状态下,心血管功能的变化可能与Arl2、Paqr4、Pdk1、Sst、Tmprss5涉及的转导通路的改变有关。 Objective To study the molecular mechanism of cardiovascular regulatory functional changes in rats under simulated weightlessness condition. Methods The gene changes of cardiovascular central tissue in five control rats and the five models were examined with gene chip technology to display the essence of cardiovascular functional changes. Results The gene chips showed that ADP-ribosylation factor-like2,progestin and adipoQ receptor family member IV,pyruvate dehydrogenasekinase,isozyme1;somatostatin,sst, transmembraneprotease, tmprss5 and serine5(spinesin)were changed in the cardiovascular center under simulated weightlessness. Conclusion Under weightlessness the changes of cardiovascular function are related to the signal channels about Arl2, Paqr4, Pdk1, Sst and Tmprss.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2010年第4期235-238,共4页 Space Medicine & Medical Engineering
基金 国家自然科学基金项目(30772694) 中华人民共和国科技部国际合作项目(2006DFA32250) 中国载人航天项目(010202)
关键词 失重模拟 心血管中枢 基因芯片 基因组 weightlessness simulation cardiovascular center gene chip genome
  • 相关文献

参考文献8

  • 1Tusher V, Tibshirani R, Chu G. Significance analysis of microarrays applied to transcriptional responses to ionizing radiation[J]. Proc Natl Acad Sci USA, 2001,98(9) : 5116-5121.
  • 2Bhamidipati A, Lewis SA, Cowan NJ. ADP ribosylation factor- like protein 2 ( Arl2 ) regulates the interaction of tubulin-folding cofactor D with native tubulin[ J]. J Cell Biol, 2000, 149 (5) :1087-1096.
  • 3Shultz T, Shmuel M, Hyman T,et al. Beta-tubulin cofactor D and Arl2 take part in apical junctional complex disassembly and abrogate epithelial structure [ J ]. FASEB J, 2008, 22 ( 1 ) : 168-182.
  • 4ZHOU C,Cunningham L, Marcus AI,et al. Arl2 and Arl3 regulate different microtubule -dependent processes[ J ]. Mol Biol Cell, 2006, 17(5) : 2476-2487.
  • 5Beghin A, Honore S, Messana C, et al. ADP fibosytation factor like 2 ( Arl2 ) protein influences microtubule dynamics in breast cancer cells [ J ]. Exp Cell Res, 2007, 313 ( 3 ) : 473- 485.
  • 6Beghin A,Matera EL, Brunet-Manquat S, et al Expression of Arl2 is associated with p53 localization and chemosensitivity in a breast cancer cell llne[J]. Cell Cycle, 2008, 7(19) :3074- 3082.
  • 7Dournaud P, Boudin H, Schonbrunn A, et al Interrelationships between somatostatin sst2A receptors and somatostatin-containing axons in rat brain: evidence for regulation of cell surface receptors by endogenous somatostatin [ J]. J Neurosci, 1998, 18(3) :1056-1071.
  • 8King CC,Zenke FT, Dawson PE, et al Sphingosine is a novel activator of 3-phosphoinositide-dependcnt kinasel [ J ]. J Biol Chem, 2000, 275(24) :18108-18113.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部