期刊文献+

用于全基因组关联分析的一种基因自动选择算法研究

An Automatic Gene Selection Algorithm for Genome-Wide Association Analysis
下载PDF
导出
摘要 目的研究适用于全基因组关联分析研究的自动基因选择方法。方法提出了一个基于随机复杂度约束的岭回归优化方法模型——L20模型,并通过推导给出了该模型的快速求解方法。结果通过在1组糖尿病临床数据和4组癌症基因芯片公开数据集上的实验,验证了L20算法的有效性。L20算法不受样本和特征维度限制,对稀疏建模问题的输出结果稳定性好,预测准确性高。且该方法在特征选择过程中即可同步确定特征参数,算法效率高。结论实验数据表明该方法性能优于基因组关联分析研究常用的特征选择算法,为肿瘤遗传标记定位研究提供了一种有希望的解决方案。 Objective To study automatic gene selection algorithm adaptable for genome-wide association analysis. Methods The proposed L20 algorithm was defined as an optimization of the ridge regression problem which was based on the restraint of stochastic complexity of the gene models. A simple and effective derived solution to the optimized problem was also provided in this paper. Results Five binary diseases classification problems derived from a clinical diabetes data set and four publicly available microarray data sets were examined to verify the performance of the proposed algorithm. The proposed algorithm was not restricted by the size of the features and the samples, and its output was stable and accurate. Besides, it was computationally efficient since the model parameters could be decided through the feature selection process.Conclusion Numerical results also show that the L20 method outperforms many other conventional methods, which makes it a promising solution for tumor biomarker identification.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2010年第4期274-278,共5页 Space Medicine & Medical Engineering
基金 国家高技术研究发展计划(863计划)资助项目(2006AA01Z411)
关键词 基因选择 特征选择 全基因组关联 生物标记定位 gene selection feature selection genome-wide association biomarker identification
  • 相关文献

参考文献11

  • 1Hirschhorn JN. Genomewide association studies: illuminating biologic pathways [ J ]. New England Journal of Medicine, 2009,360(17) : 1699-1701.
  • 2杨振森,李传富,周康源,刘伟,冯焕清.基于小波变换的超声图像纹理特征提取及前列腺癌诊断[J].航天医学与医学工程,2009,22(4):281-285. 被引量:5
  • 3张娅,饶妮妮,王敏,徐尚蕾.一种基于基因表达谱的结肠癌特征提取方法[J].航天医学与医学工程,2008,21(4):356-360. 被引量:7
  • 4Hastie T,Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction [ M ]. New York : Springer-Verlag,2001 : 26-39.
  • 5Park MY, Hastie T. L1-regularization path algorithm for generalized linear models[ J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2007, 69 (4): 659-677.
  • 6Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B, 2005,67(2) : 301-320.
  • 7Grunwald PD, Rissanen J. The Minimum Description Length Principle [ M ]. Cambridge, MA : The MIT Press ,2007 : 23 -60.
  • 8Myung JI, Navarro DJ, Pitt MA. Model selection by normalized maximum likelihood [ J ]. Journal of Mathematical Psychology, 2006,50(2) : 167-179.
  • 9Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data[J]. Journal of the American Statistical Association, 2002,97(457) : 77-87.
  • 10邱浪波,王广云,王刚,王正志.相关向量机在肿瘤表达谱分类问题中的应用[J].中国生物医学工程学报,2008,27(1):82-86. 被引量:3

二级参考文献23

  • 1汪小毅,林江莉,李德玉,汪天富,郑昌琼,程印蓉.基于纹理分析的脂肪肝B超图像识别[J].航天医学与医学工程,2004,17(2):144-148. 被引量:19
  • 2李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 3马峰,李潭秋.基于径向基网络的液冷服人体实验非线性模型辨识[J].航天医学与医学工程,2005,18(6):432-436. 被引量:3
  • 4Lobet R. , Perez-cortes JC, Toselli AH. Computer-aided detection of prostate cancer [ J ]. Int J Med Informatics, 2007, 76 ( 7 ), 547-556.
  • 5Mohamed SS, Salama MMA. Computer aided diagnosis for prostate cancer using support vector machine[ C ]. In: Galloway RL, Cleary KR, eds. Proceeding of SPIE, Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display, Son Diego,2005, 5744 : 898-906.
  • 6Li J, Mohamed SS, Salama MMA,et al. Prostate tissue texture feature extraction for cancer recognition in TRUS image using wavelet decomposition [ J ]. Image Analysis and Recognition, 2007, 4633:993-1004.
  • 7Houston AG, Premkumar SB, Pitts DE, et al. Prostate ultrasound image analysis: Localization of cancer lesions to assist biopsy[ C]. In: Proceedings of the Eighth IEEE Symposium on Computer- Based Medical Systems. Lubbock: IEEE Computer Society, 1995, 94-101.
  • 8Mausumi A, Malay KK. Wavelet-based texture segmentation of remotely sensed images[ C]. In Proc. Int. Conf. Image analysis and processing. Washington: IEEE Computer Society, 2001, 69-74.
  • 9Chi-Man Pun, Moon-Chun Lee, Log-polar wavelet energy signatures for rotation and scale invariant texture classification [ J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2003, 25 ( 5 ) :590-603.
  • 10Baeg S, Kehtarnavaz N. Texture based classification of mass abnormalities in mammograms [ C ]. In : Proceedings of the 13th IEEE Symposium on Computer-Based Medical Systems, Washington: IEEE Computer Society, 2000, 163-168.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部