期刊文献+

闭口薄壁杆件受碰撞的振动方程求解 被引量:3

Solution of Dynamic Equation in Thin-Walled Close Section Beam under Impact
下载PDF
导出
摘要 基于薄壁杆件理论、能量泛函变分原理和闭口薄壁杆件翘曲函数的特征,推导了闭口薄壁杆件的双向弯扭耦合动力方程,此方程可退化为Bernoulli-Euler梁弯扭耦合动力方程.根据结构的边界条件、连续条件和碰撞接触平衡条件,采用Laplace积分变换和逆变换方法求解闭口薄壁杆件受碰撞的动力方程,获得了闭口薄壁杆件的各种瞬态动力响应.将结果与Bernoulii-Eurler薄壁梁理论结果相比较,计算结果表明:考虑剪切变形对冲击力和扭转角的影响不大,但对位移的影响比较显著. The dynamic differential equations of coupled bending and torsional vibration in Timoshenko thin-walled beam with closed section had been deduced based on the theory of thin-walled structures,the dynamic differential equations and the characteristic of warping function.The equations can be degenerated into the differential equation of coupled bending and torsional vibration in Bernoulli-Euler thin-walled beam with closed section.Then,according to boundary conditions,continuous condition and impact contact equilibrium condition,the dynamic differential equations in thin-walled closed section beam under impact were solved by Laplace transform and inverse transform,and all kinds of transient dynamic responses of beam have been obtained.Finally,the result was compared with the result which was solved based on the theory of BernoulliEuler thin-walled beams.It shows that shear deformation has little effect on impact force and torsion angle,but has much effect on displacement.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2010年第4期348-351,共4页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(50978058) 全国优秀博士学位论文作者专项基金资助项目(200954)
关键词 薄壁结构 碰撞 动力响应 thin-walled beam impact dynamic response
  • 相关文献

参考文献5

二级参考文献23

  • 1邢誉峰,乔元松,诸德超,孙国江.ELASTIC IMPACT ON FINITE TIMOSHENKO BEAM[J].Acta Mechanica Sinica,2002,18(3):252-263. 被引量:5
  • 2陈镕,郑海涛,薛松涛,唐和生,王远功.无约束Timoshenko梁横向冲击响应分析[J].应用数学和力学,2004,25(11):1195-1202. 被引量:10
  • 3诸德超,邢誉峰.点弹性碰撞问题之解析解[J].力学学报,1996,28(1):99-103. 被引量:38
  • 4[1]Bishop R E D, Cannon S M, Miao S. On coupled bending and torsional vibration of uniform beams. Journal of sound and vibration, 1989,131:457-464
  • 5[2]Dokumaci E. An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry.Journal of sound and vibration, 1987,119:443-449
  • 6[3]Friberg P O. Beam element matrices derived from Vlasov's theory of open thin-walled elastic beams. International Journal of numerical methods in engineering, 1985,21:1205-1228
  • 7[4]Leung A Y T. Natural shape functions of a compressed Vlasov element. Thin-walled structure, 1991,11:31-438
  • 8[5]Vlasov V Z. Thin-walled Elastic Beams, 2nd edn, Moscow, 1959
  • 9[6]Bishop R E D, Price W G. Coupled bending and twisting of a Timoshenko beam. Journal of sound and vibration, 1977,50:469-477
  • 10陈锦,同济大学学报,1991年,19卷,2期,167页

共引文献5

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部