期刊文献+

考虑横向惯性效应非线性粘弹性杆的应变波 被引量:1

Strain Waves in a Nonlinear Viscoelastic Rod under the Consideration of Transverse Inertia
下载PDF
导出
摘要 基于D′Alembert原理和虚功原理推导了考虑横向惯性效应下三次材料非线性粘弹性杆的基本控制方程,在有限小振幅的前提下利用多重时间尺度法及行波法,导出了反应应变畸变的MKdV-Burgers方程,在此基础上进一步推广应用双曲正切函数法得到了应变MKdV-Burgers方程激波形式的精确解,结果表明:该杆在软非线性材料的条件下可能存在激波,其传播速度与阻尼系数的平方成正比,与色散系数成反比;波宽则与阻尼成反比,与色散系数成正比,并且该种波的传播速度低于线弹性波速. The basic longitudinal wave equation was derived by D′Alembert principle and virtual work principle for a cubic nonlinear Keilven-Voigt viscoelastic rod under the consideration of transverse inertia.Multiple scale method and traveling wave theory were applied to get the strain governing equation for small-but-finite waves.Furthermore,the exact Shock wave solutions of MKdV-Burgers equation for nonlinear viscoelastic rod were also obtained by hyperbolic tanh-function method.It is found that shock wave may exist in a rod made of soft nonlinear material,whose traveling speed is proportional to the square of damp coefficient and inversely proportional to dispersion coefficient.On the other hand,the wave width is inversely proportional to the damp coefficient and proportional to dispersion coefficient.After all the speed of the traveling wave given above is less than that of linear elastic case.
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2010年第4期352-355,共4页 Journal of North University of China(Natural Science Edition)
基金 山西省自然科学基金资助项目(2007011018)
关键词 激波 粘弹性 MKDV-BURGERS方程 精确解 shock wave viscoelastic MKdV-Burgers equation exact solution
  • 相关文献

参考文献9

  • 1张善元 庄蔚.非线性弹性杆中的应变孤波[J].力学学报,1988,20(1):58-66.
  • 2Samsonov A M.Evolution of a soliton in a nonlinearly elastic rod of variable cross-section[J].Soc.Phys.Dokl.,1985,29:586-587.
  • 3Samsonov A M,Sokurinskaya E V.Solitary longitudinal waves in an inhomogeneous nonlinear elastic rod[J].J.Appl.Math.Mech.,1988,51:376-381.
  • 4Samsonov A M.Nonlinear strain waves in elastic waveguides[C].in:A.Jeffrey,J.Engelbreght (Eds.),Nonlinear Waves in Solids.New York:Springer,1994:349-382.
  • 5Dai H H,Huo Y.Solitary waves in an inhomogeneous rod composed of a general hyperelastic material[J].Wave Motion,2002,35:55-69.
  • 6高歌.湍流的耗散与弥散相互作用理论.中国科学A 辑,1985,(5):457-465.
  • 7Wang M L.Solitary wave solutions for variant Boussinesq equations[J].Phys.Lett.A,1995,199:169.
  • 8Wang M L.Exact solutions for a compound KdV-Burgers equation[J].Phys.Lett.A,1996,213:279.
  • 9王明亮,王跃明,张金良.The periodic wave solutions for two systems of nonlinear wave equations[J].Chinese Physics B,2003,12(12):1341-1348. 被引量:15

二级参考文献41

  • 1Ablowitz M J and Clarkson P A .1991 .Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University Press).
  • 2Rogers C and Shadwick W F .1982. Backlund transformations (New York: Academic).
  • 3Hirota R .1973. J Math Phys. 14 810.
  • 4Cariello F and Tabor M .1991 .Physica D .53 59.
  • 5Fan E G .2000 .Phys Lett A. 277 212.
  • 6Bai C L. 2001 .Phys Lett A. 288 191.
  • 7Xia T C, Zhang H Q and Yan Z Y .2001 .Chin Phys. 10694.
  • 8Li Z B and Pan S Q .2001. Acta Phys Sin. 50 402 (in Chinese).
  • 9Lu K P, Shi Y R, Duan W S and Zhao J B .2001. Acta Phys Sin. 50 2074 (in Chinese).
  • 10Guo G P and Zhang J F .2002. Acta Phys Sin. 51 1159(in Chinese).

共引文献31

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部