期刊文献+

铝酸钠溶液的电导率与结构的关系 被引量:14

Relationship Between Electric Conductivity and Ion Structure of Sodium Aluminate Solution
下载PDF
导出
摘要 通过测定不同浓度Na2O和苛性比(αk)的铝酸钠溶液的电导率,计算了不同Na2O浓度下铝酸根阴离子的迁移数,结合铝酸钠溶液的红外光谱表征,研究了铝酸钠溶液的电导率与结构的关系.研究结果表明,低浓度铝酸钠溶液[c(Na2O)<175g/L]中,铝酸根阴离子的迁移数约为0.6,其离子结构主要为Al(OH)4-;中等浓度溶液[c(Na2O)=175~330g/L]中,铝酸根阴离子的迁移数约为0.2,其离子结构主要为Al(OH)4-和[Al2(OH)8(H2O)2]2-;而高浓度溶液[c(Na2O)>330g/L]中,铝酸根阴离子的离子迁移数接近于0,对应的离子结构主要是Al2O(OH)62-,[Al2(OH)8(H2O)2]2-和少量Al(OH)4-.说明铝酸根离子的导电能力与结构密切相关. A better understanding of the relationship between transference number of aluminate anions(t) and the structure of sodium aluminate solutions is of great significance for strengthening and optimizing the alumina production technologies.Combining with the characterization of FTIR analyses of the solution,the intrinsic relationship between the electric conductivity and the structure of sodium aluminate solutions was investigated by measuring the electric conductivity of the solution and calculating t in the solution of different alkali concentration and molar ratio of Na2O to Al2O3.The results show that in the solution of low concentration of c(Na2O)175 g/L,the aluminate anions dominantly exist in the form of Al(OH)-4 and t is approximately 0.6;that in the solution of medium concentration of c(Na2O) from 175 g/L to 330 g/L,the aluminate anions mainly exist in the form of Al(OH)-4 and [Al2(OH)8(H2O)2]^2-,in which t is approximately 0.2;and that in the solution of high concentration of c(Na2O)330 g/L,aluminate anions exist dominantly in the form of Al2O(OH)6^2- and [Al2(OH)8(H2O)2]^2-with a little Al(OH)4^-,where t is almost zero.This illustrates that the electric conduction ability of the aluminate anion in the sodium aluminate solution is closely related to its structure.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2010年第8期1651-1655,共5页 Chemical Journal of Chinese Universities
基金 国家"九七三"计划项目(批准号:2005CB6237)资助
关键词 铝酸钠溶液 电导率 迁移数 离子结构 Aluminate solution Electric conductivity Transference number Ion structure
  • 相关文献

参考文献15

  • 1Moolenaar R.J.,Evans J.C.,McKeever L.D..J.Phys.Chem.[J],1970,74:3629-3636.
  • 2李彩今,李守贵,肖丰收.硅铝酸钠溶液中^27Al和^29Si的核磁共振研究[J].高等学校化学学报,2009,30(6):1092-1094. 被引量:3
  • 3Radnai T.,May P.M.,Hefter G.T.,Sipos P..J.Phys.Chem.A[J],1998,(102):7841-7845.
  • 4Sipos P..J.Mol.Liq.[J],2009,146:1-14.
  • 5王趁义,罗明标,毕树平.环境中羟基聚合铝型体的形成和形态转化规律[J].分析科学学报,2003,19(4):383-388. 被引量:8
  • 6YANG Zhong-Yu(杨重愚).Technology on Production of Aluminium Oxide(氧化铝生产工艺学)[M],Beijing:Metallurgical Industry Press,1993:39-46.
  • 7Diakonov I.,Pokrovski G.,Schott J.,Castet S.,Gout R..Geochim.Cosmochim.Acta[J],1996,60(2):197-211.
  • 8Barcza L.,Plfalvi-Rzsahegyi M..Mater Chem.Phys.[J],1989,21(4):345-356.
  • 9Anich I.,Bagshaw T.,Margolis N.,Skillingberg M..Light Met.[J],2002,193-198.
  • 10JIA Meng-Qiu(贾梦秋).Applied Electrochemistry(应用电化学)[M],Beijing:Higher Education Press,2004:17-22.

二级参考文献29

  • 1施尔畏,夏长泰,仲维卓,华素坤,冯楚德,冯锡淇,张申.水热法制备的BaTiO_3微晶粒的特性[J].无机材料学报,1995,10(4):385-390. 被引量:36
  • 2刘文新,栾兆坤,汤鸿霄.水体中铝(Ⅲ)的化学形态及其生态效应的研究进展[J].生态学报,1996,16(2):212-220. 被引量:23
  • 3Smith M. E. , Van Eck E. R. H.. Progr. Nuclear Magnetic Resonance Spectroscopy[J], 1999, 34:159-201
  • 4Xu R. R., Pang W. Q., Yu J. H., et al.. Chemistry of Zeolites and Porous Materials[M], Singapore: Wiley, 2007
  • 5Engelhardt G. , Zeigen D. , Janeke H. , et al.. Z. Anorg. Allg. Chem. [J] , 1975, 418:17-28
  • 6Hobbel D. , Garzo G. , Engelhardt G. , et al.. Z. Anorg. Allg. Chem. [J] , 1976, 424:115-127
  • 7Harris R. K., Newman R. H.. Org. Magn. Reson. [J], 1997, 9(7): 426-431
  • 8Harris R. K. , Knigh C. T. G.. J. Chem. Soc. , Faraday Trans. [J], 1983, 2(79) : 1525-1538
  • 9Harris R. K., Knight C. T. G., Hull W. E.. J. Am. Chem. Soe. [J], 1981, 103(17):4992-4996
  • 10Lippmaa E., Magi M., Samoson A. , et al.. J. Am. Chem. Soc. [J], 1980, 102(15) : 4889-4893

共引文献18

同被引文献137

引证文献14

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部