期刊文献+

基于流程模拟与Elman神经网络的燃煤电厂CO_2吸收系统动态数据检验方法

Dynamic Data Validation Method of CO_2 Absorption System in Coal-fired Power Plant Based on Process Simulation and Elman Network
原文传递
导出
摘要 提出了结合流程模拟与Elman神经网络的燃煤电厂联胺吸收CO2系统动态数据检验方法。通过流程模拟软件Aspen HYSYS建立动态模型,获得动态数据,采用一步前预测方法构造样本训练Elman网络,通过训练后的网络对测量参数进行预测估计。通过Aspen HYSYS与Matlab的数据通信实现了Elman网络对HYSYS动态过程数据的在线检验。仿真试验表明,该方法能有效地对CO2吸收系统动态过程的数据进行在线检验,提高脱碳系统监测的可靠性。 A dynamic data validation method of CO2 absorption system with diamide in coal-fired power plant based on a combination of process simulation and Elman neural network was proposed.The dynamic model was constructed by the process simulation soft Aspen HYSYS,and the dynamic data was obtained.The one-step-ahead prediction method was adopted to create sample training set for Elman network,and the prediction of the measurement parameters were obtained through the trained network.The online validation of Elman network to dynamic process data of HYSYS was implemented by data communication between Aspen HYSYS and Matlab.The simulation tests showed that this method was effective in data online validation of CO2 absorption system dynamic process and the monitoring reliability of CO2 absorption system could be improved.
作者 梁海文 周栋
出处 《华东电力》 北大核心 2010年第7期1087-1090,共4页 East China Electric Power
关键词 ASPEN HYSYS ELMAN网络 动态数据检验 CO2吸收 Matl Aspen HYSYS Elman network dynamic data validation CO2 absorption Matl
  • 相关文献

参考文献4

二级参考文献11

  • 1Elman J L. Finding structure in time [ J ]. Cognitive Science, 1990, 14:179-211.
  • 2Pham D T, Karaboga D. Training Elman and Jordan networks for system identification using genetic algorithms[J]. Artificial Intelligence in Engineering, 1999,13(2) :107 - 117.
  • 3Peter J M, Barry L K. Parallel training of simple recurrent neural networks [ A ]. In: International Symposium on Speech, Image Processing and Neural Networks[ C].New York, 1994. 167 - 170.
  • 4Qin Si-zhao, Su Hong-te, McAvoy Thomas J. Comparison of four neural net learning methods for dynamic system identification [J ]. IEEE Transactions on Neural Networks, 1992,3( l ) :122 - 130.
  • 5Molnar A, Markos J. Safety Analysis of CSTR Towards Changes in Operating Conditions [ J ], Journal of Loss Prevention in the Process Industries ,2003,16:373-380.
  • 6Sivakumar S C. Steady-state Operability Characteristics of Reactors[ J ]. Comp Chem Eng,2000,24 : 1563-1568.
  • 7Fogler H S. Elements of Chemical Reaction Engineering [M].London : Prentice Hall, lnc, 1999.
  • 8Dan S. Training Radial Network with the Extended Kalman Filter[J]. Neurocomputing,2002 .48 :455-475.
  • 9OPC Function. Data Access Automation Interface Standard 2. 04[M]. OPC Function ,2001.
  • 10李明,徐向东.传感器故障检测的Powell神经网络方法[J].热能动力工程,2002,17(1):73-75. 被引量:7

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部