期刊文献+

旋转状态下孔排构型气膜冷却特性实验研究 被引量:1

Experimental Study of Film Cooling on a Rotating Model with a Single Row of Holes
原文传递
导出
摘要 通过对旋转状态下带有孔排构型平板叶片模型表面的气膜冷却换热特性进行实验研究,得到了不同吹风比、旋转数、主流雷诺数和密度比情况下气膜孔下游流向位置上绝热效率的变化规律,同时提出了一个新的用于评价气膜冷却效果优劣的无量纲参数——有效覆盖率(EAR)。实验采用空气和二氧化碳作为冷却工质,利用热色液晶测温(TLC)技术对测试表面的二维温度场进行测量,并通过旋转拍照系统对液晶图片进行即时采集。研究结果表明,吹风比对旋转状态下二次流的流动形态起着决定性作用。随着吹风比的增大,二次流经历了附壁流动、分离流动和分离再附壁流动3种形态。当旋转数增大时,吸力面和压力面上的绝热效率呈现先上升后下降趋势,且压力面上整体绝热效率要高于吸力面对应值。主流雷诺数的增大导致壁面绝热效率出现降低趋势,但整体冷却效果变化不大;冷气对主流密度比的增大则有助于壁面冷却效果的改善。此外,EAR可以对不同工况下的壁面气膜冷却效果进行量化比较和评判,因而极具工程推广价值。 Distributions of adiabatic film cooling effectiveness for different blowing ratios,rotation numbers,mainstream Reynolds numbers and density ratio are experimentally investigated on a rotating flat blade model with a single row of four injection holes,and a new dimensionless parameter,namely effective area ratio(EAR),is proposed to evaluate the integrated cooling performance of film cooling.Both the air and carbon dioxide are used as coolant,and the steady-state thermochromic liquid crystal(TLC) technique is employed to measure the temperature profiles on the test surface while the TLC images are recorded instantaneously by means of a rotating shooting system.The results show that the average blowing ratio plays a decisive role in the flow patterns.With the increase of the blowing ratio the coolant flows first appressedly,then separately and then again attaching after separation.With the augmentation of the rotation number,the laterally averaged adiabatic effectiveness on the pressure and suction surfaces increases first but declines again,and overall effectiveness on the pressure surface is superior to that on the suction side.Increase of the Reynolds numbers tends to diminish the adiabatic effectiveness slightly,and coolant with high values of density ratio is prone to improve the final cooling performance.Furthermore,the EAR can provide reasonable evaluation and comparison to cooling performance under different operating conditions.Therefore,it may find wide application in film cooling studies.
作者 杨彬 徐国强
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第8期1524-1537,共14页 Acta Aeronautica et Astronautica Sinica
关键词 气膜冷却 绝热效率 叶片模型 热色液晶 旋转 film cooling adiabatic effectiveness flat blade model thermochromic liquid crystal rotation
  • 相关文献

参考文献24

  • 1Goldstein R J.Film cooling[M] ∥Irvine T F Jr,Hartnett J P.Advances in heat transfer.New York and London:Academic Press Inc.,1971:321-379.
  • 2Han J C,Dutta S,Ekkad S V.Gas turbine heat transfer and cooling technology[M].New York:Taylor & Francis,2000:129-243.
  • 3Dring R P,Blair M F,Joslyn H D.An experimental investigation of film cooling on a turbine rotor blade[J].Journal of Engineering for Power,1980,102(1):81-87.
  • 4Takeishi K,Aoki S,Sato T,et al.Film cooling on a gas turbine rotor blade[J].Journal of Turbomachinery,1992,114(4):828-834.
  • 5Abhari R S,Epstein A H.An experimental study of film cooling in a rotating transonic turbine[J].Journal of Turbomachinery,1994,116(1):63-70.
  • 6Garg V K.Adiabatic effectiveness and heat transfer coefficient on a film-cooled rotating blade[J].Numerical Heat Transfer,Part A:Applications,1997,32(8):811-830.
  • 7Garg V K.Heat transfer on a film-cooled rotating blade using different turbulence models[J].International Journal of Heat and Mass Transfer,1999,42(5):789-802.
  • 8Garg V K,Abhari R S.Comparison of predicted and experimental Nusselt number for a film-cooled rotating blade[J].International Journal of Heat and Fluid Flow,1997,18(5):452-460.
  • 9Garg V K.Heat transfer on a film-cooled rotating blade[J].International Journal of Heat and Fluid Flow,2000,21(2):134-145.
  • 10Ahn J,Schobeiri M T,Han J C,et al.Film cooling effectiveness on the leading edge of a rotating film-cooled blade using pressure sensitive paint[R].ASME Paper GT 2005-68344,2005.

二级参考文献38

  • 1李杰,陈凡,郑莉,姚永庆.扇形叶栅叶尖间隙流动及其对叶尖换热的影响[J].工程热物理学报,1996,17(4):446-451. 被引量:3
  • 2杨晓军,陶智,丁水汀,徐国强,罗翔.旋转状态下曲率对气膜冷却影响的分析[J].航空学报,2007,28(3):540-544. 被引量:6
  • 3李冰,朱惠人,许都纯,邓明春.密度比对涡轮叶片表面气膜冷却换热系数的影响[J].航空学报,2007,28(4):801-805. 被引量:5
  • 4Han JC,Dutta S,Ekkad SV,et al.Gas turbine heat transfer and cooling technology.New York:Taylor/Francis;2000,p.129-243.
  • 5Eriksen VL,Goldstein RJ.Heat transfer and film cooling following injection through inclined tubes.J Heat Transfer 1974;96:239-45.
  • 6Hay N,Lampard D,Saluja CL,et al.Effects of cooling films on the heat transfer coefficient on a flat plate with zero mainstream pressure gradient.J Eng Gas Turbines Power 1985;107:105-10.
  • 7Andrews GE,Alikhanizadeh M,Asere AA,et al.Small diameter film cooling holes:wall convective heat transfer.J Turbomachinery 1986;108:283-9.
  • 8Karni J,Goldstein RJ.Surface injection effect on mass transfer from a cylinder in crossflow:a simulation of film cooling in the leading edge region of a turbine blade.J Turbomachinery 1990;112:418-27.
  • 9Mehendale AB,Han JC.Reynolds number effect on leading edge film effectiveness and heat transfer coefficient.J Heat Mass Transfer 1993;36:3723-30.
  • 10Abuaf N,Bunker R,Lee CP,et al.Heat transfer and film cooling effectiveness in a linear airfoil cascade.J Turbomachinery 1997;119:302-9.

共引文献14

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部