期刊文献+

密集杂波环境下基于KHM的多目标数据关联 被引量:2

Data Association for Multiple Targets Based on KHM in Dense Clutters
下载PDF
导出
摘要 针对在杂波密集、多目标交叉的场景中,传统聚类算法在数据关联中出现的用聚类中心点更新航迹产生较大误差。为减少误差,提高航迹精度,提出一种基于KHM(k-Harmonic Means)的多目标数据关联算法。算法首次将KHM用于多目标的数据关联问题中,先对接收到的量测数据通过KHM算法进行聚类处理,然后结合最近邻思想完成量测-航迹的关联,在目标出现密集交叉时,引入KHM的"软聚类"方法,实现了量测-航迹的精确关联。采用蒙特卡罗仿真结果表明,基于KHM的关联算法在精度上要优于PDA算法,并验证了算法的可信性和有效性。 A new data association algorithm based on KHM for multiple targets in dense clutters is proposed.The KHM method is applied firstly to data association for multiple targets.The proposed algorithm firstly classifies the received measurements,then combines the nearest neighbor method to carry out the measurement-track association.By introducing the idea of soft clustering of the KHM,association is exactly realized in closer targets environment.The Monte Carlo simulation results show that the association precision of the algorithm based on KHM is superior to PDA,therefore,it verifies the feasibility and validity of the proposed algorithm.
作者 刘陕军
出处 《计算机仿真》 CSCD 北大核心 2010年第8期69-72,共4页 Computer Simulation
基金 国家高技术研究发展计划(863计划)(2007AA12Z138593)
关键词 多目标数据关联 密集杂波 软聚类 Data association for multiple targets Dense clutters Soft clustering
  • 相关文献

参考文献12

  • 1Thagalingam Kirubarjan,Yaakov Bar-Shalom.Probabilistic Data Association Techniques for Target Tracking in Clutter[C].Proceedings of the IEEE,2004,92(3):536-557.
  • 2Y Bar-Shalom.Multitarget-Multisensor Tracking:Advanced Applications[C].Norwood,MA:Artech House,1990.65-68.
  • 3J A Roecker,G L Phillis.Suboptimal Joint Probabilistic Data Association[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):510-517.
  • 4B Zhou,N K Bose.Multitarget Tracking in Clutter:Fast Algorithms for Data Association[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):352-363.
  • 5Lei Chen,J Martin.Data association based on optimization in graphical models with application to sensor networks[M].Elsevier,Mathematical and Computer Modelling,2006.1114-1135.
  • 6Y M Chen.Information fusion in data association applications[J].Elsevier,Applied Soft Computing,2006.394-405.
  • 7Hong wei Tian,Zhong liang Jing.A multi-space data association algorithm for target tracking systems[J].Elsevier,Nonliner Science and Numerical Simulation,2007.608-617.
  • 8韩红,韩崇昭,朱洪艳,刘允才.基于FCM的多传感器融合多目标跟踪的数据关联[J].系统仿真学报,2004,16(9):2096-2099. 被引量:10
  • 9Rui Xu.Student Member,IEEE and Donald Wunsch II,Fellow,IEEE.Survey of Clustering Algorithms[J].IEEE Transactions on Neural Networks,2005,16(3):645-677.
  • 10L Kaufman,P J Rousseeuw.Finding Groups in Data:an Introduction to Cluster Analysis[M].New York:Wiley,1990.

二级参考文献9

  • 1Bezdek C James. Convergence theory for fuzzy c-means: counter examples and repairs [J]. IEEE Transaction On Systems, Man and Cybernetics, 1987, 17: 873-877.
  • 2Ashraf M. Aziz, Murali Tummala, Roberto Cristi. Fuzzy logic data correlation approach in multi-sensor multi-target tracking systems [J], Signal Processing 76 (1999) 195} 209.
  • 3Y. Bar-Shalom, T.E. Fortmann. Tracking and Data association [M]. New York, Academic Press, 1988.
  • 4Y. Bar-Shalom and X. R. Li. Estimation and Tracking [M]. Boston, Artech House, 1993.
  • 5Seong-Taek Park, Jang Gyu Lee. Improved Kalman filter design for three-dimensional rada tracking [J]. IEEE Transactions on aeroapace and electronic systems, 2001,37(2):727-739.
  • 6R.J. Fitzgerald. Development of practical PDA logic for multitarget tracking by microprocessor [A]. in: Y. Bar-Shalom (Ed.), Multitarget–Multisensor tracking: Advanced Application [C]. Noorwood, MA, Artech House, 1990.
  • 7Mourad Oussalah, Joris De Schutter, Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter [J], Information Sciences 142 (2002) 195–226.
  • 8R.N. Dave. Characterization and detection of noise in clustering [J], Pattern Recognition Lett. 12 (1991) 657–664.
  • 9何金国,石青云.一种新的聚类分析算法[J].中国图象图形学报(A辑),2000,5(5):401-405. 被引量:10

共引文献9

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部