期刊文献+

基于球面杂交的自适应动态克隆选择算法

Adaptive Dynamic Clone Selection Algorithm Based on Sphere Crossover
下载PDF
导出
摘要 在克隆选择算法搜索函数最优解问题的研究中,针对传统自适应动态克隆选择算法收敛速度慢、精度低以及种群多样性低的缺点,提出了一个基于球面杂交的自适应动态克隆选择算法。新算法采用浮点数编码方式,在每次迭代过程中,首先根据抗体的亲和度动态计算出每个抗体的变异概率,然后根据亲和度大小将抗体种群动态分为记忆单元和一般抗体单元,并采用球面杂交方式对种群进行调整,提高了算法的收敛速度和求解精度。实例验证了所提算法的有效性和可行性。 As the traditional adaptive dynamic clone selection algorithm has some shortcomings,such as slow convergence,low accuracy and low population diversity,a new clone selection algorithm for searching optimal solution of function is studied and an adaptive dynamic clone selection algorithm is presented to improve it,which is based on sphere crossover.Firstly,using floating-point encoding,the mutation probability of each antibody is dynamically calculated in each iteration process,according to antibody affinity.And then,according to the size of antibody affinity,antibody populations are dynamically divided into memory antibody units and general antibody units.Subsequently,antibody populations are adjusted by sphere crossover so that algorithm convergence speed and solution accuracy are improved.The effectiveness and the feasibility of the proposed algorithm are verified by examples.
作者 成新文 李琦
出处 《计算机仿真》 CSCD 北大核心 2010年第8期201-204,共4页 Computer Simulation
关键词 球面杂交 克隆选择算法 变异概率 抗体亲和度 Sphere crossover Clone selection algorithm Mutation probability Antibody affinity
  • 相关文献

参考文献8

二级参考文献36

  • 1杜海峰,焦李成,刘若辰.免疫优势克隆算法[J].电子与信息学报,2004,26(12):1918-1924. 被引量:22
  • 2[1]S Forrest,A Perelson,L Allen et al.Self -nonself Discrimination Computer[C].In:proc IEEE Symp on Research in Security and Privacy,1994
  • 3[2]J Kim,P J Bentley.An Evaluation of Negative Selection In An Artificial Immune System for Network Intrusion Detection[C].In:Proceedings of The Genetic and Evolutionary Computation Conference,2001:1330~1337
  • 4[3]Jungwon Kim,Peter J Bentley. Towards an Artificial Immune System for Network Intrusion Detection :An Investigation of Dynamic Clonal Selcetion[C].In:proc IEEE Symp on Research in Security and Privacy, 2002
  • 5[1]Dasgupta D, Forrest S. Artificial immune systems in industrial applications[C]. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials (IPMM '99), Honolulu, 1999, 1: 257-267.
  • 6[3]Gasper A, Collard P. From GAs to artificial immune systems: improving adaptation in time dependent optimization[A]. Proceedings of the Congress on Evolutionary Computation (CEC 99)[C], Washington: IEEE press, 1999: 1859-1866.
  • 7[4]De Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications[C].Proc. of GECCO'00, Workshop on Artificial Immune Systems and Their Applications, Nevada,2000: 36-37.
  • 8[5]Kim J, Bentley P J. Towards an artificial immune system for network intrusion detection: an investigation of clonal selection with a negative selection operator[C]. Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, 2001, 2: 1244-1252.
  • 9[6]Du Haifeng, Jiao Licheng, Wang Sun'an. Clonal operator and antibody clone algorithms. Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5November, 2002: 506-510.
  • 10[8]Silvano M, David P, Paolo T. New trends in exact algorithms for the 0-1 knapsack problem[J].European Journal of Operational Research, 2000, 13(2): 325-332.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部