期刊文献+

基于改进遗传算法的波束形成方法 被引量:10

An Approach of Beamforming Based on Improved Genetic Algorithm
下载PDF
导出
摘要 研究传感器阵列信号优化问题,针对传统的简单遗传算法应用于传感器阵列的波束形成时,存在收敛速度慢和计算结果稳定性低的问题,提出了一种基于改进遗传算法的波束形成优化方法。算法对简单遗传算法的初始种群生成、适应度函数、交叉算子和异化算子等多个要素进行了改进,并融入了自适应技术。将改进的遗传算法应用于波束形成,并进行了仿真。仿真结果证明,有效地提高了收敛速度和计算结果的稳定性。证明改进遗传算的波束形成方法,获得了比原始方法旁瓣级更低的波束图,波束形成的性能更优。 This paper proposes an optimization approach of beamforming based on genetic algorithm(IGA),considering the fact that the conventional simple genetic algorithm(SGA) has disadvantages of slow convergent speed and low stability when applied in beamforming of an array.The improved algorithm makes some improvements in several factors of SGA,which include initial population creation,fitness function,crossover operator and mutation operator.And the conception of adaptation is also introduced into this algorithm.The convergent speed and stability are both effectively promoted when IGA is applied to beamforming.The results of simulation show that the sidelobe of beam pattern based on IGA is lower than that based on SGA,and the performance of beamforming based on IGA is superior to that based on SGA.
出处 《计算机仿真》 CSCD 北大核心 2010年第8期208-211,共4页 Computer Simulation
关键词 波束形成 波束图 改进遗传算法 收敛速度 稳定性 Beamforming Beam pattern Improved genetic algorithm Convergent speed Stability
  • 相关文献

参考文献7

  • 1D Marcano,F Duran,O Chang.Synthesis of multiple beam linear antenna arrays using genetic algorithms[C].Antennas and Propagation Society International Symposium,18-23 June 1995.938-941.
  • 2Su Tao,Ling Hao.Array Beamforming in the Presence of a Mounting Tower Using Genetic Algorithms[J].IEEE Transactions on Antenna and Propagation,2005,53(6):2011-2019.
  • 3杨丹,王英民,苟艳妮.SA与GA算法在波束图设计中的比较分析[J].计算机仿真,2008,25(8):323-327. 被引量:3
  • 4Yan Keen-Keong,Lu Yilong.Sidelobe reduction in array-pattern synthesis using genetic algorithm[J].IEEE Transactions on Antennas and Propagation,1997,45(7):1117-1122.
  • 5Tu Zhenguo,Lu Yong.A robust stochastic genetic algorithm (StGA) for global numerical optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(5):456-470.
  • 6高玮.改进的快速遗传算法及其性能研究[J].系统工程与电子技术,2003,25(11):1427-1430. 被引量:41
  • 7李乐,史忠科.基于遗传算法改进的交通干线信号优化研究[J].计算机仿真,2009,26(1):260-263. 被引量:5

二级参考文献15

  • 1周浦城,洪炳镕,杨敬辉.基于混沌遗传算法的移动机器人路径规划方法[J].哈尔滨工业大学学报,2004,36(7):880-883. 被引量:11
  • 2沈国江.城市区域交通智能分散控制研究[J].浙江大学学报(工学版),2006,40(4):585-589. 被引量:11
  • 3周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,2001..
  • 4孙树栋,周明.遗传算法原理及应用[M].北京:国防工业出版社,1999.76-77.
  • 5马远良.任意结构形状传感器阵方向图的最佳化[M].上海:中国造船出版社,1984.15-108.
  • 6G Fernando. Lobo The parameter - less genetic algorithm in practice[ J]. Elsevier Science Inc,2004,
  • 7N Davids, E G Thurston, R E Mueser. The design of optimum directional acoustic arrays[J]. JASA, 1951.
  • 8R L Pfitchard, Maximum directivity index of a linear point array [J]. JASA, 1954.
  • 9CARL A, OLEN, A Numerical Pattern Synthesis Algorithm for Arrays [ J]. IEEE, 1990.
  • 10张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164. 被引量:78

共引文献46

同被引文献54

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部