期刊文献+

一种新的遥感图像海岸线检测方法 被引量:6

A New Method of Coastline Detection for Remote Sensing Image
下载PDF
导出
摘要 灰度遥感图像像素数一般比较大,特别是高分辨率的遥感图像,海岸线检测速度比较慢,限制了在工程中的实际应用。为了提高大型遥感图像的速度和精确性,提出了一种基于模糊聚类的快速海岸线检测方法。方法能够快速准确的提取和检测海岸线,对检测时间复杂度为常数,不随着遥感图像的增大而增大,并且检测过程中,无需人为干预,无需依靠阈值分割,而能够自动快速地从分割遥感图像中提取出海岸线。采用合成孔径雷达(SAR)遥感图像做了仿真实验,证明方法能够快速而有效的提取出海岸线。 The data of gray remote sensing image is very large,so coastline detection is very slow,and this case is especially worst for high resolution remote sensing image.Thereby,many coastline detection method can not be applied in practical project.Aiming at this problem,a new fast coastline detection method based on Fuzzy Clustering Mothed is presented.This optimization method can detect coastline fast and correctly,and the time complexity of detection is constant,on the other hand,the detection process is not only without manpower,but also without depending on threshold.The coastline can be detected automatically and fast.Finally,the feasibility of the method is validated by practical application with SAR Synthetic Aperture Radar images.
出处 《计算机仿真》 CSCD 北大核心 2010年第8期212-214,254,共4页 Computer Simulation
基金 国家科技部支撑计划课题-水上溢油遥感识别与监测技术(2006BAC11B01) 海洋局重点实验室开放研究基金(200809)
关键词 遥感图像 海岸线 快速检测 模糊分类 Remote sensing image Coastline Fast detection Fuzzy cluster method
  • 相关文献

参考文献14

二级参考文献54

  • 1欧阳越,种劲松.基于改进水平截集算法的SAR图像海岸线检测[J].遥感技术与应用,2004,19(6):456-460. 被引量:18
  • 2郑宏 潘励.基于遗传算法的图象阈值的自动选取[J].中国图象图形学报,2000,5(4):327-330.
  • 3Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 4Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 5Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 6Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 7Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 8Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 9Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 10Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.

共引文献324

同被引文献158

引证文献6

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部