期刊文献+

基于监督的局部保存投影的人脸识别 被引量:3

Supervised Locality Preserving Projection Based Face Recognition
下载PDF
导出
摘要 人脸识别是计算机视觉的一个重要分支,而且它可以被应用到许多领域。维数约减对人脸识别来说是十分重要的,不仅可以去除一些不必要的噪声,还可以有效地减少计算复杂度。传统的局部保存投影(LPP)算法仅仅考虑了样本点的局部邻居信息,并没有考虑到不同类别的样本对分类效果的影响,结果会造成不同类数据点的重叠。为减少计算的复杂度,在局部保存投影算法的基础上引入样本的类别信息,构造了监督的局部保存投影算法(SLPP)。通过人脸识别仿真实验,验证了新算法的有效性与健壮性,并改变上述的不足。 Face recognition is an important branch of computer vision and can be applied in lots of fields.In the past few years,face recognition has received more focuses.Dimensionality reduction is the key technique for face recognition.It not only can clear some unnecessary noise,also can reduce the complicated degree of computation effectively.The traditional Locality Preserving Projection algorithm only considers the local information of the example data and neglects the impact of the different class labels,which results in the overlap of the data points of different classes.In this paper,we introduce the class labels information based on LPP,and propose Supervised Locality Preserving Projections(SLPP).Through some face recognition experiments,we show the effectiveness and robustness of SLPP.
出处 《计算机仿真》 CSCD 北大核心 2010年第8期215-217,273,共4页 Computer Simulation
关键词 监督的局部保存投影 人脸识别 流形学习 Supervised locality preserving projections Face recognition Manifold learning
  • 相关文献

参考文献8

  • 1I T Joliffe.Principal component analysis[M].New York:Springer,1986.
  • 2P N Belhumeur,J P Hespanha and D J Kriegman.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3S Roweis and L Saul.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323-2326.
  • 4Lawrence K Saul and Sam T Roweis.Think Globally,Fit Locally:nsupervised learning of low dimensional manifolds[J].Journal of Machine Learning Research.2003,4:119-155.
  • 5J B Tenenbaum,V de Silva and J C Langford.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323.
  • 6X He and P Niyogi.Locality preserving projections[C].Proc.Advances in Neural Information Processing System Conf.2003.
  • 7X He,S Yan,Y Hu,P Niyogi and H J Zhang.Face recognition using; aplacianfaces[J].IEEE.Trans.Pattern Analysis and Machine Intelligence,2005,27(3).
  • 8Fan R K Chung.Spectral graph theory,regional conferences series in mathematics[C].number 92,1997.

同被引文献23

  • 1袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55
  • 2王加阳,王国仁.基于粗集的多知识库决策融合[J].控制与决策,2007,22(6):657-662. 被引量:6
  • 3吕志军,杨建国,项前,王晓玲.基于支持向量机的纺纱质量预测模型研究[J].控制与决策,2007,22(6):693-696. 被引量:17
  • 4Kononenko I. An experiment in machine learning of redun dant knowledge[C]// Proc Inter Conf MELECON. Ljublja- na, Slovenia:IEEE, 1991: 1146-1149.
  • 5He Xiaofei, Yan Shuichen, Hu Yuxiao, et al. Face recogni- tion using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 328-340.
  • 6Ekman P, Friesen W V.Constants across cultures in the face and emotion[J].Journal of Personality and Social Psychology, 1971,17(2) : 124-129.
  • 7Tenenbaum J B,De Silva V,Langford J C.A global geo- metric framework for nonlinear dimensionality reduction[J]. Science, 2000,290 : 2319-2323.
  • 8Roweis S L, Saul L.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000,290 : 2323-2326.
  • 9Belkin M,Niyogi P.Laplacian eigenmaps for dimension- ality reduction and data representation[J].Neural Compu- tation,2003,15(6) ~ 1373-1396.
  • 10Yang M H.Kernel eigenfaces vs.kernel fisherfaces: face recognition using kernel methods[C]//Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Washington DC:IEEE Computer So- ciety, 2002 : 215-220.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部