摘要
At the stage of preliminary scheme and algorithm design for spaceborne navigation systems, a precise and high-fidelity software global positioning system (GPS) simulator is a necessary and feasible testing facility in laboratory environments, with consideration of the tradeoffs where possible. This article presents a software GPS measurements simulator on the L1 C/A code and carrier signal for space-oriented navigation system design. The simulator, coded in MATLAB language, generates both C/A code pseudorange and carrier phase measurements. Mathematical models in the Earth centered inertial (ECI) frame are formulated to simulate the GPS constellation and to generate GPS measurements. A series of efficient measures are investigated and utilized to rationalize the enhanced simulator, in terms of ephemeris data selection, space ionospheric model and range rate calculation, etc. Such an enhanced simulator has been facilitating our current work for designing a space integrated GPS/inertial navigation system (INS) navigation system. Consequently, it will promote our future research on space-oriented navigation system.
At the stage of preliminary scheme and algorithm design for spaceborne navigation systems, a precise and high-fidelity software global positioning system (GPS) simulator is a necessary and feasible testing facility in laboratory environments, with consideration of the tradeoffs where possible. This article presents a software GPS measurements simulator on the L1 C/A code and carrier signal for space-oriented navigation system design. The simulator, coded in MATLAB language, generates both C/A code pseudorange and carrier phase measurements. Mathematical models in the Earth centered inertial (ECI) frame are formulated to simulate the GPS constellation and to generate GPS measurements. A series of efficient measures are investigated and utilized to rationalize the enhanced simulator, in terms of ephemeris data selection, space ionospheric model and range rate calculation, etc. Such an enhanced simulator has been facilitating our current work for designing a space integrated GPS/inertial navigation system (INS) navigation system. Consequently, it will promote our future research on space-oriented navigation system.
基金
Research Fund of Shanghai Academy of Spaceflight Technology