期刊文献+

Rotary dynamics of solitons in radially periodic optical lattices

Rotary dynamics of solitons in radially periodic optical lattices
原文传递
导出
摘要 We investigate the dynamics of strongly localized solitons trapped in remote troughs of radially periodic lattices with Kerr-type self-focusing nonlinearity. The rotary motion of solitons is found to be more stable for larger nonlinear wavenumbers, lower rotating velocity, and shorter radius of the trapping troughs. When the lattice is shrunk or expanded upon propagation, the solitons can be trapped in the original trough and move outward or inward, with their rotating linear velocity inversely proportional to the radius of the trapping troughs. We investigate the dynamics of strongly localized solitons trapped in remote troughs of radially periodic lattices with Kerr-type self-focusing nonlinearity. The rotary motion of solitons is found to be more stable for larger nonlinear wavenumbers, lower rotating velocity, and shorter radius of the trapping troughs. When the lattice is shrunk or expanded upon propagation, the solitons can be trapped in the original trough and move outward or inward, with their rotating linear velocity inversely proportional to the radius of the trapping troughs.
机构地区 Department of Physics
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第8期791-794,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.10674038 and 10974039) the National Basic Research Program of China(No. 2006CB302901)
关键词 ROTATION
  • 相关文献

参考文献19

  • 1Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
  • 2M. H. Li, Chin. Phys. B 16, 3187 (2007).
  • 3N. Ding and Q. Guo, Chin. Phys. B 18, 4298 (2009).
  • 4J. Zhou, X. Meng, C. Ren, Y. Gao, and M. Chen, Acta Opt. Sin. (in Chinese) 29, 2270 (2009).
  • 5Y. Zhang, C. Hou, and X. Sun, Chinese J. Lasers (in Chinese) 35, 694 (2008).
  • 6Y. Silberberg, Opt. Lett. 15, 1282 (1990).
  • 7J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
  • 8Z. H. Musslimani and J. K. Yang, J. Opt. Soc. Am. B 21, 973 (2004).
  • 9V. S. Shchesnovich, A. S. Desyatnikov, and Y. S. Kivshar, Opt. Express 16, 14076 (2008).
  • 10Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Phys. Rev. Lett. 93, 093904 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部