期刊文献+

基于群交叉变异MPPSO的MIMO雷达发射波束形成 被引量:5

Transmitted beamforming of MIMO radar based on swarm exchange and aberrance MPPSO
下载PDF
导出
摘要 采用基于智能算法优化发射信号互相关矩阵的方法来形成所期望的发射天线方向图,实现多输入多输出(multiple-input multiple-output,MIMO)雷达发射波束控制。根据MIMO雷达数学模型构建了适合智能优化的代价函数,提出群交叉变异多相粒子群算法(swarm exchange and aberrance multiple-phase particle swarm op-timization,SEA-MPPSO),并将其应用于MIMO雷达发射信号互相关性的优化,实现了发射波束赋形。方法快速高效,能最大程度地逼近全局最优解。计算机仿真结果证明了方法的可行性和有效性。 A method of realizing transmitted beamforming by designing the cross correlation matrix of transmitting signals to establish a desired beam pattern is studied,which implements control of transmitting beam of the multiple-input multiple-output(MIMO) radar.According to the mathematical model of the MIMO radar,a cost function suitable for intelligence optimization is constructed.A new algorithm called swarm exchange and aberrance multiple-phase particle swarm optimization is proposed,which is good at optimizing the correlation of the MIMO radar transmitting signal,and many desired patterns of the transmitted beam are acquired.The presented method can converge quickly and approach to the global best solution farthest.The computer simulation results testify the validity of the method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第8期1613-1617,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60601016)资助课题
关键词 发射波束形成 群交叉变异 互相关矩阵 多相粒子群 MIMO雷达 transmitted beamforming swarm exchange and aberrance cross correlation matrix multiple-phase particle swarm optimization(MPPSO) multiple-input multiple-output(MIMO) radar
  • 相关文献

参考文献15

  • 1Eran F,Alex H,Rick B R,et al.MIMO radar:an idea whose time has come[C]// Proc.of the IEEE Radar Conference,Philadeaphia,Pennsylvania,USA:IEEE,2004:71-78.
  • 2Eran F,Alexander H,Rick B S,et al.Spatial diversity in radars-models and detection performance[J].IEEE Trans.on Signal Processing,2006,54(3):823-838.
  • 3Yan H D,Li J,Liao G S.Multi-target identification and localization using bistatic MIMO radar systems[J].EURASIP Journal on Advances in Signal Proessing,2008,8(1):1-8.
  • 4Bekkerman I,Tabrikian J.Target detection and localization using MIMO radar and sonars[J].IEEE Trans.on Signal Processing,2006,54(10):3873-3883.
  • 5Jian Li.MIMO radar signal processing[M].Wiley,Hoboken,New Jersey,Canada,2009:87-111.
  • 6Fuhrmann D R,Geoffrey S A.Transmit beamforming for MIMO radar systems using partial signal correlation[C]// Proc.of 38th Asilomar Conference on Signals,Systems and Computers,Pacific Grove,California,USA:ACSSC,2004:295-299.
  • 7Kennedy J,Eberhart R.Particle swarm optimization[C]// Proc.of IEEE International Conference on Neural Networks,Perth,1995:1942-1948.
  • 8Shi Yuhui,Eberhart R.A modified particle swarm optimization[C]// Proc.of IEEE International Conference on Evolutionary Computation,Anchorage,1998:69-73.
  • 9Ray T,Liew K M.A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems[C]// Proc.of IEEE International Conference on Evolutionary Computation,Seoul,2001:75-80.
  • 10Boeringer D W,Wemer D H.Particle swarm optimization versus genetic algorithm for phased array synthesis[J].IEEE Trans.on Antenna and Propagation,2004,52:771-779.

二级参考文献26

  • 1孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 2高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 3玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 4Kennedy J, Eberhart R C. Particle swarm optimizatiort [C].Proc. IEEE Int. Conf. on Neural Networks. Perth, WA, Australia: IEEE Service Center, 1995: 1942-1948.
  • 5Maurice Clerc. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [C].Proc. Congress on Evolutionary Computation. Washington DC: Springer, 1999: 1927-1930.
  • 6Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimization with breeding and subpopulations [C].Proc. Genetic and Evolutionary Computation Conf. San Francisco: Morgan Kaufmann Publishers, 2001 : 469-476.
  • 7B Liu, L Wang, Y-H Jin, F Tang, D X Huang. Improved particle swarm optimization combined with chaos[J]. Chaos Solitons &Fractals (S0960-0779), 2005, 25(21): 1261-1271.
  • 8Fosehini G J, Gans M J. On limits of wireless communications in fading environment when using multiple antennas [ J ]. Wireless Personal Communications, 1998, 6 (3) : 311 -335.
  • 9Siavash M, Alamouti. A simple transmit diversity technique for wireless communications [J]. IEEE Journal on Selected Areas in Communications, 1998, 16 (8) : 1 451-1 458
  • 10Fishler E, Haimovich A, Blum R, et al. MIMO radar: An idea whose time has come [ A]. Proceeding of the IEEE 2004 Radar Conference [ C ]. Philadelphia, Pennsylvania, USA : IEEE,2004. 71 - 78.

共引文献65

同被引文献64

  • 1武思军,张锦中,张曙.阵列波束的零陷加宽算法研究[J].哈尔滨工程大学学报,2004,25(5):658-661. 被引量:44
  • 2曹运合,李强,王胜华,张守宏.宽带相控阵雷达发射波束零点形成方法[J].西安电子科技大学学报,2006,33(3):395-399. 被引量:8
  • 3姚坤,李菲菲,刘希玉.一种基于PSO和GA的混合算法[J].计算机工程与应用,2007,43(6):62-64. 被引量:18
  • 4卢建斌,胡卫东,郁文贤.基于协方差控制的相控阵雷达资源管理算法[J].电子学报,2007,35(3):402-408. 被引量:45
  • 5Li J, Stoica P, Xu L, et al. On parameter identifiability of MIMO radar [J]. IEEE Signal Processing Letters, 2007, 14 (12):968- 971.
  • 6Xu L, Li J, Stoica P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Trans. on Aerospace and ELectronic Systems, 2008,44 (3) : 927 - 939.
  • 7Yang Y, Blum R S. Minimax robust MIMO radar waveform design[J]. IEEEJournal of Selected Topics in Signal Processing,2007,1(1) :147 - 155.
  • 8Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Trans. on Aerospace and Electronic Systems" ,2007,43(1):330 - 343.
  • 9Fishier E, Haimovich A, Blum R S, et al. Spatial diversity in radars-models and detection performance[J]. IEEE Trans. on Signal Processing ,2006,54(3) :823 - 838.
  • 10Lehmann N H, Fishler E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Trans. on Signal Processing, 2007,55(5) : 2215 - 2225.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部