期刊文献+

一种通用的阵群目标队形识别方法 被引量:5

General formation recognition method for group targets
下载PDF
导出
摘要 受传感器检测性能和观测噪声的影响,阵群成员位置观测集合往往具有不完全性和不确定性,并含有杂波。这种情况下,基于固定基准点的传统阵群目标队形识别方法不再适用。为此,提出了一种通用的阵群目标队形识别方法。该方法根据不同的队形模板和队形观测,动态选择二者队形描述的基准点,有效地抑制了漏检、位置噪声和杂波对阵群目标队形描述的影响;通过队形观测和队形模板的队形描述之间的匹配来对前者的队形进行识别。仿真实验验证了所提方法的有效性。 Influened by the detection performance and observation noise of a sensor,the position observation set of members within a group of targets is often incomplete and uncertain and usually contains clutter.The conventional group target formation recognition methods based on fixed datum mark are no more applicable on these practical conditions.Aiming at the problem,a general method for group target formation recognition is proposed.The method selects the datum mark dynamically depending on the different formation templates and formation observations,which restrains the effect of missing detection,position noise and clutter on the formation description for group targets effectively.The formation of the observed group target is recognized by matching of its formation description and that of the formation templates.Simulation experiments validate the effectiveness of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第8期1703-1705,共3页 Systems Engineering and Electronics
基金 "十一五"国防预研基金(513060302)资助课题
关键词 识别 基准点 模板匹配 阵群目标 队形 recognition datum mark template matching group target formation
  • 相关文献

参考文献8

  • 1Stroud P D,Gordon R C.Automated military unit identification in battle field simulation[C]// Proc.of SPIE,1997,3069:375-386.
  • 2Suzi(c) R.Representation and recognition of uncertain enemy policies using statistical models[R].RTO IST Symposium on "Military Data and Information Fusion",Prague,Czech Republic,2003,10-1:10-18.
  • 3蔡益朝,张维明,贺玲,刘忠.一种基于Hough变换的线型群体队型识别方法[J].国防科技大学学报,2006,28(2):124-130. 被引量:7
  • 4乔冰 肖滨 张从智等.基于模板匹配的环形护卫舰艇编队队形自动识别研究.计算机研究与发展,2005,42:479-482.
  • 5乔冰,肖滨.基于模板匹配的战斗舰艇队形自动识别研究[J].计算机仿真,2006,23(9):4-6. 被引量:11
  • 6Huttenlocher D P,Klanderman G A,Rucklidge W J.Comparing images using the hausdorff distance[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(9):850-863.
  • 7Deb S,Yeddanapudi M,Pattipati K,et al.A generalized S-D assignment algorithm for multisensor-multitarget state estimation[J].IEEE Trans.on Aerospace and Electronic Systems,1997,33(2):523-538.
  • 8Bar-Shalom Y,Kirubarajan T,Gokberk C.Tracking with classification-aided multiframe data association[J].IEEE Trans.on Aerospace and Electronic Systems,2005,41(3):868-878.

二级参考文献10

  • 1胡晓峰,等.作战模拟术语导读[M].北京:国防大学出版社,2004.
  • 2Carl G L,Liang R L.Cognitive Situation and Threat Assessments of Ground Battlespaces[J].Information Fusion,2003,4(4):297-308.
  • 3Roy J.From Data Fusion to Situation Analysis[A].Proceedings of the Fourth International Conference on Information Fusion[C],Montreal,Canada,2001.
  • 4Johnson B L,Grayson T P.Moving Target Exploitation[A].Proceedings of SPIE[C],Orlando,USA,1998:172-183.
  • 5Schwartz S A.Algorithm for Automatic Recognition of Formations of Moving Targets[A].Proceedings of SPIE[C],2000:407-417.
  • 6Stroud P D,Gordon R C.Automated Military Unit Identification in Battle Field Simulation[A].Proceedings of SPIE[C],1997:375-386.
  • 7Hough P V C.Method and Means for Recognizing Complex Patterns[P].USA:3069654,1962.
  • 8Stuart Russell, Peter Norvig. Artificial Intelligence A Modem Approach[M]. P665, POSTS & TELECOM PRESS, 2004 -6.
  • 9Sergios Theodoridis, Konstantinos Koutroumbas. Pattern Recognition[M]. 电子工业出版社,2004-8.209.
  • 10C K W heung , D Y Yeung, R T Chin. On deformable models for visual pattern recognition [ J ]. Pattern Recognition, 2002, 35 :1507 - 1526.

共引文献12

同被引文献41

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部