期刊文献+

用样本密度法解决支持向量机拒识区域 被引量:2

Sample density method for unclassifiable region of support vector machine
下载PDF
导出
摘要 拒识区域是传统多分类支持向量机中存在的主要缺陷之一。为克服这一不足,提高多分类支持向量机的分类性能和泛化能力,提出将样本密度法用于解决支持向量机拒识区域问题。该方法以落入拒识区域中的样本点为中心,某一阈值为半径建立一个超球体,然后计算各类样本集在该超球体内的样本密度,最后选择最大样本密度对应的类为样本的所属类。数据实验结果表明,样本密度法实现了零拒识,有效提高了传统多分类支持向量机的分类性能。 Unclassifiable region(UR) is one of the primary disadvantages in conventional multi-classification support vector machine(MSVM).To overcome the shortage and enhance the classification capacity and generalization ability of MSVM,a sample density method(SDM) is presented.SDM first constructs a hypersphere which considers the sample falling into the UR as a center and a certain threshold as radius.Then,sample density for each class in the hypersphere is computed and the class with the largest sample density is labelled for the sample.Experimental results on synthetic datasets and benchmark datasets show that SDM eliminates the UR in conventional MSVM and improves the classification performance of MSVM effectively.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第8期1771-1774,共4页 Systems Engineering and Electronics
关键词 样本密度法 拒识区域 多分类 支持向量机 sample density method unclassifiable region multi-classification support vector machine(SVM)
  • 相关文献

参考文献21

  • 1Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 2Oladunni O O,Trafalis T B.A regularized pairwise multi-classification knowledge-based machine and applications[J].European Journal of Operational Research,2009,195:924-941.
  • 3Kumar M A,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36:7535-7543.
  • 4Chandaka S,Chatterjee A,Munshi S.Support vector machines employing cross-correlation for emotional speech recognition[J].Measurement,2009,42(4):611-618.
  • 5Zhao Fucai Hu Yihua Hao Shiqi.Classification using wavelet packet decomposition and support vector machine for digital modulations[J].Journal of Systems Engineering and Electronics,2008,19(5):914-918. 被引量:4
  • 6Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
  • 7Kreβel U.Pairwise classification and support vector machines[M]// Schlkopf B,Burges C J C,Smola A J.Advances in kernel methods:support vector learning.Cambridge,MA:MIT Press,1999:255-268.
  • 8Abe S,Inoue T.Fuzzy support vector machines for pattern classification[C]// Proc.of the International Joint Conference on Neural Networks,2001:1449-1454.
  • 9Abe S,Inoue T.Fuzzy support vector machines for multiclass problems[C]// Proc.of the 10th European Symposium on Artificial Neural Networks,2002:113-118.
  • 10Tsujinishi D,Abe S.Fuzzy least squares support vector machines for multiclass problems[J].Neural Networks,2003,16:785-792.

二级参考文献1

共引文献3

同被引文献23

  • 1邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004..
  • 2SUN Yong—kui, CHEN Guang—ju, HUI Li. Analog circuits fault diagnosis using support vector machine[C]// International Conference on Communications, Circuits and Systems, ICCCAS 2007, 2007: 1003-1006.
  • 3YANG Cheng—lin, TIAN Shu—lin, BING Long, et al. Methods of handling the tolerance and test—point selection problem for analog—circuit fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(1): 176-185.
  • 4Carlos P, Borges C D. On the use of multitone techniques for assessing RF components’intermodulation distortion[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(12): 2393-2402.
  • 5Carvalho, N B,Pedro J.C. Multi—tone intermodulation distortion performance of 3rd order microwave circuits[C]//.Microware symposium Digest,1999(2):763-766.
  • 6Vapnik V, Lerner A. Pattern recognition using generalized portrait method[J]. Automation and Remote Control, 1963, 24(6):774-780.
  • 7HU Zhong—hui, CAI Yun—ze, XING He, et al. Fusion of multi—class support vector machines for fault diagnosis[C]//American Control Conference,Proceedings of the 2005, 2005: 1941-1945.
  • 8Chang C C, Chien L J, Lee Y J. A novel framework for multi—class classification via ternary smooth support vector machine[J]. Pattern Recognition,2011,44(6):1235-1244.
  • 9Schlkopf B, Burges C J C, Smola A J. Advance in kernel methods: support vector learning. Cambridge, MA: MIT Press, 1999:255-268.
  • 10Chang C C, Lin C J. LIBSVM : a library for support vector machines[EB/OL].(2007—06—14). http://www.csie.ntu.edu.tw/~cjlin/libsvm.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部