期刊文献+

递推信度传播算法—按良序的信度传播 被引量:3

Recursive Belief Propagation—Belief Propagation in a Well-order
下载PDF
导出
摘要 针对循环信度传播算法在多环的贝叶斯网中迭代次数较多且不一定收敛的问题,提出了递推信度传播算法.它与循环信度传播及其推广算法的区别就在于按某一特定顺序(良序)进行信度传播.该算法经过一轮信度传播便达到不动点,显著降低了计算量.按这种顺序传播信度等价于去掉网络中某些边而解除了网络中的环,从而使信度不再出现环流.此算法得到的不动点与循环信度传播算法在收敛时得到的不动点是一致的,也就是网络的Bethe自由能的最小值点.最后,实验验证本文所提的算法在实际应用中能有效地降低推理的复杂度. Aimed at the loopy belief propagation s unknown convergence and too many iterations on Bayesian networks with cycles,an algorithm named recursive belief propagation (RBP) is proposed.Different from the classical belief propagation,a special order (well-order) is followed by RBP.Passing messages according to this order is equivalent to breaking the cycles sequentially,so the messages cannot circulate and the fixed point is arrived at in one trial.Furthermore,this fixed point is the same as the result of the loopy belief propagation or the minimal point of Bethe free energy.At last,we prove the good performance of the proposed algorithm by experiments.
出处 《自动化学报》 EI CSCD 北大核心 2010年第8期1091-1098,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60772050) 国家科技重大专项资助项目(2009ZX02001)资助~~
关键词 贝叶斯网络 信度传播 良序 Bethe自由能 Bayesian network belief propagation (BP) well-order Bethe free energy
  • 相关文献

参考文献16

  • 1Pearl J. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 1986, 29(3): 241-288.
  • 2Kschischang F, Frey B, Loeliger H. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.
  • 3Heskes T. On the uniqueness of loopy belief propagation fixed points. Neural Computation, 2004, 16(11): 2379-2413.
  • 4Ihler A, Fisher J, Willsky A. Loopy belief propagation: convergence and effects of message errors. The Journal of Machine Learning Research, 2005, 6(5): 905-936.
  • 5Yedidia J S, Freeman W T, Weiss Y. Constructing free energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 2005, 51(7): 2282-2312.
  • 6Nishiyama Y, Watanabe S. Generalization of concave and convex decomposition in Kikuchi free energy. In: Proceedings of the 18th International Conference on Artificial Neural Networks. Prague, Czech Republic: Springer, 2008. 51-60.
  • 7Goldberger J, Kfir H. Serial schedules for belief-propagation: analysis of convergence time. IEEE Transactions on Information Theory, 2008, 54(3): 1316-1318.
  • 8Hazan T, Shashua A. Convergent message-passing algorithms for inference over general graphs with convex free energies. In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. Helsinki, Finland: AUAI Press, 2008. 264-273.
  • 9Meltzer T, Globerson A, Weiss Y. Convergent message passing algorithms - a unifying view. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Montreal, Canada: AUAI Press, 2009. 393-401.
  • 10Wainwright M, Jordan M. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008, 1(1-2): 1-305.

二级参考文献13

  • 1J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988
  • 2J Suzuki. A construction of bayesian networks from databases based on a MDL scheme.In: Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo, CA: MorganKaufmann, 1993. 266~273
  • 3Y Xiang, S K M Wong. Learning conditional independence relations from aprobabilistic model. Department of Computer Science, University of Regina, CA, Tech Rep:CS-94-03, 1994
  • 4D Heckerman. Learning bayesian network: The combination of knowledge andstatistical data. Machine Learning, 1995, 20(2): 197~243
  • 5J Cheng, D A Bell, W Liu. Learning belief networks from data: An information theorybased approach. In: Proc of the 6th ACM Int'l Conf on Information and KnowledgeManagement. Las Vegas,USA:ACM Press, 1997. 325~331
  • 6S K M Wong. An extended relational data model for probabilistic reasoning. Journalof Intelligent Information Systems, 1997, 9(2): 181~202
  • 7S K M Wong, C J Butz, D Wu. On the implication problem for probabilisticconditional independence. Department of Computer Science, University of Regina, CA, TechRep: CS-99-03, 1999
  • 8D Heckerman. A bayesian approach to learning causal networks. Microsoft Research,Microsoft Corporation, Tech Rep: MSR-TR-95-04, 1995
  • 9C Beeri, R Fagin, D Maier et al. On the desirable properties of acyclic databaseschemes. Journal of ACM, 1983, 30(3): 479~513
  • 10林士敏,田凤占,陆玉昌.贝叶斯学习、贝叶斯网络与数据采掘[J].计算机科学,2000,27(10):69-72. 被引量:34

共引文献13

同被引文献18

  • 1向培素.聚类算法综述[J].西南民族大学学报(自然科学版),2011,37(S1):112-114. 被引量:14
  • 2张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 3王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:144
  • 4褚一平,张引,叶修梓,张三元.基于隐条件随机场的自适应视频分割算法[J].自动化学报,2007,33(12):1252-1258. 被引量:11
  • 5FreyBJ,DUeCkD.Clustering by Passing messages between data points[J].Science,2007,315:972-976.
  • 6JUDEA PEARL.Fusion,Propagation,and Structuring in Belief Networks[J].Artificial Intelligence,1986,29:241-288.
  • 7FRANK R,KSCHISCHANG,BRENDAN J,et al.Factor Graphs and the Sum-Product Algorithm[J].Trans Inform Theory,2001,47(2):498-519.
  • 8WANG K J.Supplement of adaptive affinity propagation clustering[EB/OL].(2007-12-11)[2014-03-19]http://www.mathworks.com/ matlabcentral/fileexchange/loadAuthor.do?objectType=arthor&objectId=1095267.
  • 9HALKIDI M,VAZIRGIANNIS M,BATISTAKIS Y.Quality scheme assessment in the clustering process[A].Proc of 4th Eur Conf Principles and Practice of Knowledge Discovery in Databases[C].2000:165-276.
  • 10孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部