摘要
在一个具有吸入/吹出功能、幂律变化的伸展表面上,分析了二维稳定非Newton流体的流动.假定热传导率按温度的线性函数变化.将控制方程无量纲化后,用Runge-Kutta法进行数值求解.将该问题的一个特例所得到的一些结果,与以前发表的结果相比较,发现两者有着很好的一致性.考虑两种情况,一种对应着致冷的表面温度,另一种对应着均匀的表面温度.数值结果显示,对上述两种情况,可变热传导参数β,传质参数d和幂律指数n,对温度分布和Nusselt数有着重大的影响.
An analysis of the steady two-dimensional non-Newtonian flow on a power-law stretched surface with suction or injection was considered. The thermal conductivity was assumed to vary as a linear function of temperature. The transformed governing equations in the present study were solved numerically by using the Runge-Kutta method. Some of the results obtained for a special case of the problem were compared to the results published in a previous work and were found to be in excellent agreement. Two cases were considered,one corresponding to a cooled surface temperature and the other,to a uniform surface temperature. The numerical results show that variable thermal conductivity parameter β,injection parameter d and the power-law index n have significant influences on the temperature profiles and the Nusselt number in the above two cases.
出处
《应用数学和力学》
CSCD
北大核心
2010年第8期917-923,共7页
Applied Mathematics and Mechanics