期刊文献+

瞬态对流-扩散方程的变分多尺度解法

Variational multiscale method for the transient convection-diffusion equations
下载PDF
导出
摘要 根据变分多尺度思想,求解了瞬态线性和非线性对流-扩散方程。文中为了简化"细"尺度方程的求解,忽略了该方程的瞬态性,分别用高阶多项式泡函数(High-order Polynomial Bubble)和自由残量泡(Residual Free Bubble)函数近似"细"尺度解,进而引入了消除数值伪振荡的稳定化结构。数值算例验证了本文方法的精确性、稳定性和对高Peclet数问题的适应性,证明了上述对"细"尺度模型的简化是可行的。 This paper followed the lines of variational multi-scale method and presented a variational multi-scale finite element method for the transient linear and nonlinear convection-diffusion equations.The θ family of methods were employed for the time discretization.Making a proper approximation to the fine scale solution,variational multi-scale method can stabilize the linear and nonlinear convective term with the help of the stabilization term based on the residual of the Partial Differential Equations.Modeling the fine scale by high-order polynomial bubble and residual free bubble,with the assumption that the fine scale solution is time independent corrects the lack of stability of the standard Galerkin weak form.The numerical results show that the method is stable,accurate,and yields high approximation to the high Peclet number problems.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第4期601-606,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10590353 10871159) 国家重点基础研究发展计划(2005CB321704)资助项目
关键词 瞬态对流-扩散方程 变分多尺度 稳定化方法 transient convection-diffusion variational multi-scale stabilized method
  • 相关文献

参考文献7

  • 1Hughes T J R. Multiscale Phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[J]. Comput Methods Appl Mech Engrg, 1995,127 : 387-401.
  • 2Hughes T J R, Feijoo G R, Luca M, et al. The variational multiscale methods-a paradigm of computational mechanics [J]. Comput Methods Appl Mech Engrg, 1998,166(1-2) : 3-24.
  • 3Ayub M, Masud. A new stabilized formulation for convective-diffusive heat transfer [J]. Numer Heat Transfer, 2003,43 (6) : 601-625.
  • 4Garikipati K; Hughes T J R. A variational multiseale approach to strain localization-formulation for multi- dimensional problems [J]. Colrnput Methods Appl Mech Engrg , 2000,188(1-3).
  • 5Bazilevs Y, Calo V Mo Cottrell J A, et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows[J]. Comput Methods Apll Mech Engrg , 2007,197 (1-4).
  • 6Masud A, Khurram R A. A multiscale/stabilized finite element method for advection-diffusion equation [J]. Comput Methods Appl Mech Engrg , 2004,193; 1997-2018.
  • 7Franca L P, Nesliturk A, Stynes M. On the stability of residual-free bubbles for convection-diffusion problems and their approximation by two-level finite element method[J]. Comput Methods Appl Mech Engrg, 1998,166 : 35-49.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部