期刊文献+

售电均价的市场细分预测算法

Average Electricity Sale Price Forecasting Method by Means of Market Segmentation
下载PDF
导出
摘要 售电均价是电力营销的重要参数,通过直接求电价加权和以预报售电均价,工作量极大,预测精度也不高。通过引入各细分市场电费比例作为中间量,售电均价预报问题被转化为各细分市场的电费比例预测和售电均价估算。对电费比例预测,采用改进多步混沌加权一阶局域法,对各细分市场售电均价,根据其电价体系进行估算。算法所需数据和计算量大大减少,且在湖南省电力市场均价预测算例中,取得了满意的预测效果。 The average electricity sale price is a important parameter of electricity marketing.The workload of forecasting average price by means of calculating the weighted sums of electricity price is heavy,and the forecasting precision is low.By introducing segment market electricity charge ratio as an intermediate variable,the article transforms the problem of average price forecasting into electricity charge ratio forecasting and average price estimation of each segment market.The article forecasts electricity charge ratio by means of improved multi-step chaotic adding-weight one-rank local-region method;for average price of each segment market,the article estimates it based on the electricity price system.The proposed method reduces forecasting workload remarkably,and achieves satisfactory forecasting effect in the example of Hunan province's electricity market average price forecasting.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2010年第4期77-80,共4页 Proceedings of the CSU-EPSA
关键词 售电均价 市场细分 电费比例 混沌预测 average electricity price segment market electricity charge ratio chaotic forecast
  • 相关文献

参考文献12

二级参考文献54

  • 1魏平,李均利,陈刚,张永吉.基于小波分解的改进神经网络MCP预测方法及应用[J].电力系统自动化,2004,28(11):17-21. 被引量:40
  • 2杨正瓴,张广涛,陈红新,林孔元.短期负荷预测“负荷趋势加混沌”法的参数优化[J].电网技术,2005,29(4):27-30. 被引量:15
  • 3张显,王锡凡.短期电价预测综述[J].电力系统自动化,2006,30(3):92-101. 被引量:74
  • 4高宏,索丽生,谈为雄,熊红梅.电力经济增长中的混沌[J].河海大学学报(自然科学版),1996,24(6):1-6. 被引量:4
  • 5[8]Gao Feng, Guan Xiaohong, Gao Xiren. Forecast Power Market Clearing Price Using Neural Network. In: Proceedings of 3rd World Congress on Intelligent Control and Automation. Hefei: 2000
  • 6[10]Fahlman S E, Lebiere Christian. The Cascade-correlation Learning Architecture. In: Advances in Neural Information Processing Systems (NIPS89) Morgan-Kaufmann, San Mateo CA: 1990. 524~532
  • 7[11]Fahlman S E. Faster-learning Variations on Back-propagation: An Empirical Study. In: Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann: 1988
  • 8[1]Ni Erna, Luh P B. Forecasting Power Market Clearing Price and Its Discrete PDF Using a Bayesian-based Classification Method.In: Power Engineering Society Winter Meeting. Columbus (USA): 2001.1518~1523
  • 9[2]Guan X H, Lun P B. Integrated Resource Scheduling and Bidding in the Deregulated Electric Power Market: New Challenges. Discrete Event Dynamic Systems: Theory and Applications, 1999,9(4)
  • 10[3]Skantze Petter,Ilic Marija. Stochastic Modeling of Electric Power Prices in a Multi-market Environment. In:Power Engineering Society Winter Meeting. Singapore: 2000. 1109~1114

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部