摘要
为解决输电导线舞动的理论问题,运用边界层理论建立二维曲面流动及轴对称流动在边界层坐标系中的连续方程和动量方程式。通过对输电导线截面形变及非形变情况下其边界流动层特性的分析,从理论上说明圆型截面及非圆型截面(覆冰)导线绕流时边界流动层相关参量的数学关系,结合流速分布形变因子、边界层厚度等参数给出了其边界流动层相关参量的数值解。其计算结果和实验比较,两者基本吻合,对导线舞动的分析和实际导线舞动的预防有较高参考价值。
The continuity equations and momentum equations about two-dimensional curved surface and axial symmetry flow are established in boundary layer coordinate system in order to solve the theory problem of transmission conductor galloping by applying boundary layer theory.Boundary layer parameter mathematic relations of flow around the iced conductor with circular section and no-circular section are illustrated in theory by analyzing the boundary layer flow characteristic under the transmission conductor section deformation and no-deformation conditions.The numerical solutions of boundary layer flow parameters are given by calculating velocity distribution deformation factor,parameters of boundary layer thickness and so on.By comparison,the numerical solutions and experimental results are consistent basically,which shows that the method proposed in this paper has high referential value for analyzing and preventing conductor galloping.
出处
《电力系统及其自动化学报》
CSCD
北大核心
2010年第4期118-126,共9页
Proceedings of the CSU-EPSA
关键词
导线舞动
覆冰导线绕流
边界层
流动分离
雷诺数
conductor galloping
flow around iced conductor
boundary layer
flow separation
Reynolds number