摘要
异常流量的隐蔽性和异常检测的实时性是骨干通信网流量异常检测面临的两大难题,为此提出一种多流多特征的流量异常检测方法:将网络业务量细分为多个与网络异常密切相关的子流,在各子流中分别提取多种流量特征参数与数据包特征参数等中粒度信息,对多流多特征参数同时进行异常检测。Internet2的实际数据检测结果表明,该方法能够快速准确检测出骨干网络的洪泛攻击和端口扫描等异常流量,检测结果与离线精细检测结果大致相当。
Anomaly detection in backbone network faces two problems:anomaly traffic is relatively small and real-time detection is difficult to implement.Aiming at these two difficulties,this paper proposed a detection method of traffic anomaly based on multi-flows and multi-parameters.Our method classified network traffic into several sub-flows which are closely related to network anomaly,extracted a variety of traffic features and packets features,and then detected traffic anomaly through multi-flows and multi-parameters.The detection results in Internet2's real data show that the proposed method can effectively detect flood attacks and port scans,these results almost equal to the results of the offline analysis.
出处
《微计算机信息》
2010年第24期99-101,共3页
Control & Automation
基金
基金申请人:胡光岷
项目名称:大规模通信网络异常行为特征分析与提取关键技术研究
基金颁发部门:国家自然科学基金委(60872033)
关键词
骨干通信网络
多流多特征
流量
异常检测
backbone network
multi-flows and multi-parameters
traffic
anomaly detection