期刊文献+

帧差法和Mean-shift相结合的运动目标自动检测与跟踪 被引量:10

Moving Target Detection and Tracking Based on Frame Difference Method Combined Mean-shift
下载PDF
导出
摘要 传统的Mean-shift算法简单快速,但存在半自动跟踪缺陷,在起始帧需要手动确定搜索窗口来选择目标,且核窗宽固定不变,不能实时地适应目标尺寸大小变化,容易跟丢目标。接合帧差法,首先通过帧差法检测目标,并获取目标窗口和中心,再结合Mean-shift跟踪,并通过设定ρ^(y)相对改变量r来确定目标模板是否需要重新获取,实现Mean-shift算法全自动跟踪,并能适应目标尺寸大小改变的情况。实验表明,该方法跟踪准确,实时性高。 Traditional mean-shift algorithm is simple and fast, but there are semi -automatic tracking defects, it need to determine the search window to select the target at the initial frame, and the bandwidth of keme is fixed, not in real time to adapt to changes in target size, which is easily get lost during the tracking. The frame difference method is applied, first to detect the target and obtain the target window, then to integrate mean-shift tracking and to determine whether to obtain the new target template by setting the relative amount r of ρ^^(y) . Finally to achieve the meam-shift algorithm automatic tracking, and adapt to the changing of target size. The experiments indicate that this method comes out with high accuracy in tracking and better real timing.
出处 《科学技术与工程》 2010年第24期5895-5899,共5页 Science Technology and Engineering
关键词 目标检测 帧差法 数学形态学 MEAN-SHIFT算法 target detection frame difference method mathematical morphology mean-shift algorithm
  • 相关文献

参考文献10

二级参考文献66

  • 1程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 2[1]MPEG-4 visual fixed draft international standard, ISO/IEC 14496-2, Oct. 1998
  • 3[2]Meier T,Ngan K N. Automatic Segmentation of Moving Objects for Video Object Plane Generation. IEEE Trans. On Circuits and Systems for Video Technology, 1998,8(5)
  • 4[3]Meier T,Ngan K N. Segmentation and tracking of moving objects for content-based video coding. IEE Proc. Visual Image Signal Processing, 1999, 146 (3):144~150
  • 5[4]Wang Demin. Unsupervised Video Segmentation Based on Watersheds and Temporal Tracking. IEEE Trans. Circuits and Systems for Video Technology, 1998,8(5)
  • 6[5]Deng Yining,Manjunath B S. Unsupervised Segmentation of Color-Texture Regions in Images and Video. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001,23(8)
  • 7[6]Smith S M,Brady J M. ASSET-2: Real-Time Motion Segmentation and Shape Tracking. IEEE Trans. Pattern Analysis and Machine Intelligence, 1995,17(8)
  • 8[7]Wang Y,Doherty J F,Van Dyck R E. Moving Object Tracking in Video, 0-7695-0978-9/00, 2000 IEEE
  • 9[8]Cohen I,Medioni G. Detecting and Tracking Moving Objects for Video Surveillance, 0-7695-0149-4/99, 1999 IEEE
  • 10[9]Serge BEUCHER, Recent Advance in Mathematical Morphology

共引文献141

同被引文献73

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部