期刊文献+

基于决策树结构特性的后剪枝技术研究 被引量:1

A Study of Decision Tree Post-pruning Technique Based on Its Structural Characteristics
下载PDF
导出
摘要 文章从决策树自身结构出发,总结出了三条后剪枝规则,并通过决策树的树形结构和规则集两种等价的表示方式,讨论了剪枝技术的实现。该方法无需任何其它先验知识,简洁高效,易于实现,易于实现图形化可视界面,且100%拟合训练数据集,可以独立使用,也可以作为其它剪枝算法的基础,从而加快其它算法的收敛速度。 This paper summarized up three post-pruning rules based on decision tree's structural characteristics,and discussed the implementation algorithm using the decision tree's structure and its equivalent rule set.The technique proposed in this paper,does not need any other prior knowledge.It is simple and efficient,and easy to implement,easy to develop a graphical visual interface.Moreover it fits the training data set perfectly,can be used as an independent post-pruning technique as well as a basis for other algorithms,thus speeding up their convergence.
出处 《电脑与信息技术》 2010年第4期1-4,16,共5页 Computer and Information Technology
关键词 决策树 分类规则 后剪枝技术 decision tree classification rules post-pruning technique
  • 相关文献

参考文献3

  • 1Jiawei Han,Micheline Kamber.Data Mining Concepts and Techniques [M].北京:机械出版社,2005.
  • 2L.A. Breslow and D.W.Aha. Simplifying decision trees:A survey [J]. The Knowledge Engineering Review 12 (1):1.40,1997.
  • 3B. Cestnik and LBratko, On Estimating Probabilities in Tree Pruning ,Machine Learning: EWSL- 91, Y. Kodratoff,(ed.),Lecture Notes in Artificial Intelligence[M]. Berlin: Springer -Verlag,pp. 138 - 150,1991.

同被引文献19

  • 1范洁,杨岳湘.决策树后剪枝算法的研究[J].湖南广播电视大学学报,2005(1):54-56. 被引量:9
  • 2谢益辉.基于R软件rpart包的分类与回归树应用[J].统计与信息论坛,2007,22(5):67-70. 被引量:37
  • 3陈磊.2011.中国18亿亩耕地红线遭严峻挑战.[EB/OL].[2012-6-10].http://house.ifeng.eom/news/detail.2011_02/25/48494260.shtml.
  • 4Boling AA, Tuong TP. 2008. The effect of toposequence posi- tion on soil properties, hydrology, and yield of rainfed low- land rice in Southeast Asia. Field Crops Research, 106:22 -33.
  • 5Breiman L, Friedman JH, Olshen R, et al. 1984. Classification and Regression Trees. Wadsworth New York: Chapman and Hall.
  • 6Clark LA, Pregibon D. 1992. Statistical Models in S. Monter- ey: Chapman and Hall/CRC.
  • 7De' ath G, Fabricius KE. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81: 3178-3192.
  • 8Hseu ZY, Chen ZS. 2001. Quantifying soil hydromorphology of a rice-growing Ultisol toposequence in Taiwan. Soil Science Society of America Journal, 65 : 270-278.
  • 9Tsubo M, Basnayake J. 2006. Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in Southern Laos. Field Crops Research, 97: 209-220.
  • 10White AB, Kumar P, Tcheng D. 2005. A data mining approach for understanding topographic control on climate-Induced inter-annual vegetation variability over the United States. Remote Sensing of Environment, 98 : 1-20.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部