期刊文献+

微观结构对超疏水表面润湿性的影响 被引量:18

Wettability of Superhydrophobic Surface Through Tuning Microcosmic Structure
下载PDF
导出
摘要 润湿性是衡量超疏水表面疏水强弱的最重要特征之一,而微观结构与超疏水表面的润湿性有着密切联系。本文讨论了导致超疏水现象的两种理论模型——Wenzel模型和Cassie模型,并运用模型分析了微观结构的几何参数对超疏水表面表观接触角的影响。分析表明,在制备超疏水表面过程中应使表面状态满足Cassie模型,并可以通过改变微观结构的几何参数来控制表面润湿性,获得具有较大表观接触角的超疏水表面。 Wettability is one of the most important properties which weighs hydrophobic capability of superhydrophobic surface. There are close relations between microcosmic structure and wettability of superhydrophobic surface. In this paper Wenzel model and Cassie model which bring on superhydrophobic phenomenon were discussed and the effect of microcosmic structure to apparent contact angle of superhydrophobic surface was analysed through the models. The analysis shows that the state of preparation superhydrophobic surface should be coincident with Cassie model and its wettability can be controled through changing geometry parameters of microcosmic structure to obtain a superhydrophobic surface with greater apparent contact angle.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2010年第7期163-166,共4页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(50835009 10672136) 西北工业大学科技创新基金项目(2008KJ02012)
关键词 超疏水表面 微观结构 润湿性 接触角 几何参数 superhydrophobic surface microcosmic structure wettability contact angle geometry parameter
  • 相关文献

参考文献10

  • 1CHEN Y, HE B, LEE J, et al. Anisotropy in the wetting of rough surfaces[J]. J. Colloid Interf. Sei., 2005, 281: 458-464.
  • 2LAFUMA A, QUERE D. Superhydrophobie states[J]. Nature Materials, 2003, (2): 457-246.
  • 3SUN T, FENG L, GAO X, et al. Bioinspired surfaces with special wettability[J]. Acc. Chem. Res., 2005, 38: 644-652.
  • 4NAKAJIMA A, HASHIMOTO K, WATANABE T. Recent studies on super-hydrophobic films[J]. Monatsh. Chem., 2001, 132: 31- 41.
  • 5FENG L, LI S, LI Y, et al. Superhydrophobie sttrface: from natural to artificial[J]. Adv. Mater., 2002, 14: 1857-1860.
  • 6YAMAMOTO K, OGATA S. 3-D thermodynamic analysis of superhydrophobic surfaces[J]. J. Colloid Interf. Sci., 2008, 326: 471-477.
  • 7FURMIDGE C G L. Studies at phase interfaces: the sliding of liquid drops on solid surfaces and a theory for spray retention[J]. J. Colloid Interf. Sci., 1962, 17: 309-324.
  • 8McHALE G, SHIRTCLIFFE N J, NEWTON M I. Contact-angle hysteresis on super-hydrophobic surfaces[J]. Langmuir, 2004, 20: 10146-10149.
  • 9郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699. 被引量:58
  • 10汪家道,禹营,陈大融.超疏水表面形貌效应的研究进展[J].科学通报,2006,51(18):2097-2099. 被引量:21

二级参考文献64

  • 1田军,徐锦芬,薛群基.低表面能涂层的减阻试验研究[J].水动力学研究与进展(A辑),1997,12(1):27-32. 被引量:30
  • 2Lafuma A,Quere D.Superhydrophobic states.Nature Materials,2003,2:457~460
  • 3Feng L,Li S,Li Y,et al.Super-hydrophobic surfaces: From Natural to artificial.Adv Mater,2002,14:1857~1860
  • 4Blossey R.Self-cleaning surfaces-virtual realities.Nature Materials,2003,2:301 ~306
  • 5Wang R,Hashimoto K,Fujishima A,et al.Light-induced amphiphilic surfaces.Nature,1997,388:431~432
  • 6Benedix R,Dehn F,Quaas J,et al.Application of titanium dioxide photocatalysis to create self-cleaning building materials.Lacer,2000,5:157~166
  • 7Neinhuis C,Barthlott W.Characterization and distribution of water-repellent,self-cleaning plant surfaces.Annals of Botany,1997,www.scichina.com79:667~677
  • 8Barthlott W,Neinhuis C.Purity of the sacred lotus or escape from contamination in biological surfaces.Planta,1997,202:1~8
  • 9Gu Z-Z,Uetsuka H,Takahashi K,et al.Structure color and the lotus effect.Angew Chem Int Ed,2003,42(8): 894~897
  • 10Wenzel R N.Resistance of solid surfaces to wetting by water.Ind Eng Chem,1936,28:988~994

共引文献74

同被引文献145

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部