期刊文献+

基于面向对象的离散事件仿真的VRP问题研究

Vehicle Routing Problem Based on Object-Oriented Discrete Event Simulation
下载PDF
导出
摘要 针对车辆路径问题(VRP)研究的复杂性,提出了一种新的解决方案.首先对客户货物的配送过程建立离散事件仿真模型,在模型中,配送过程事件、资源等利用面向对象的方法进行描述,VRP问题涉及的各种约束条件在仿真流程中予以处理,所以该模型可以真实模拟复杂的车辆配送过程.然后利用遗传算法对离散事件的仿真结果进行优化,得到了车辆路径问题的最优解.这种将离散事件仿真和遗传算法相结合的方法可以有效克服精确算法和智能启发式算法较难解决多约束车辆路径问题的弊端.实验结果验证了新方法的有效性和可行性,由于仿真结果详细记载了配送的全过程,因此该方法对车辆路径问题的实际应用具有一定的指导意义. A new solution for vehicle routing problem (VRP) is proposed in view of its complexity. First, discrete event simulation model of customer's distribution process is established. In this model, the events of distribution process and resources have been described by the object - oriented approach. A variety of constraints which VRP problem in- volves is processed in the simulation. The model simulates complicated vehicle delivery process. Then discrete event simulation results are optimized by the genetic algorithm. The optimal solution of VRP is finally obtained. The method which combines genetic algorithm with discrete event simulation technique can effectively overcome the disadvantages that the exact algorithms and intelligent heuristics algorithms are difficult to solve vehicle muting problem with multiple con- straints. The experimental results prove the feasibility and effectiveness of the proposed method. As the simulation results can document the whole distribution process in detail, this method has some significance to the practical application of vehicle muting problem.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第4期148-154,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家基础研究计划项目(2006CB705507)
关键词 物流工程 面向对象 离散事件仿真 车辆路径问题 遗传算法 logistics engineering object-oriented discrete event simulation vehicle muting problem genetic algo- rithm
  • 相关文献

参考文献8

  • 1Laporte G.The vehicle routing problem:an overview of exact and approximate algorithms[J].European Journal of Operational Research,1992,59:345-358.
  • 2Savelsbergh M W P.Local search in routing problems with time windows[J].Annals of Operations Research,1985,16(4):285-305.
  • 3Thangiah S R,Nygard K E,Juell P L,et al.A genetic algorithm system for vehicle routing with time windows[C] //Proceedings of the Seventh Conference on Artificial Intelligence Applications.Miami,Florida,1991:322-325.
  • 4Joe L,Roger L.Multiple vehicle routing with time and capacity constraints using genetic algorithms[C] //Proceedings of the Fifth International Conference on Genetic Algorithms.Florida,USA:AAAI.1993:452-459.
  • 5Czech Z J,Czarnas P.Parallel simulated annealing for the vehicle routing problem with time windows[C] //Proceedings of the 10th Euromicro Workshop on Parallel,Distributed and Network-Based Processing.Los Alamitos,Cal.,USA:IEEE Computer Society,2002:376-383.
  • 6Bullnbeimer B,Hartl R F,Strauss C.An improved ant system algorithm for the vehicle routing problem[J].Annals of Operations Research,1999,89(13):319-328.
  • 7王德东,郑丕谔.车辆路径问题的混沌神经网络解法[J].计算机集成制造系统,2005,11(12):1747-1750. 被引量:7
  • 8Crockes J G,Balmer D W.A three-phase simulation system written in pascal[J].Journal of Operation Research Society,1986,37(6):603-618.

二级参考文献10

  • 1DANTZIG G B,RAMSER K B.The truck dispatch Problem[J].Management Science,1959,12(1):80-91.
  • 2LAPORTE G,LOUVEAUX F V,MERCURE H.The vehicle routing problem with stochastic travel times[J].Transportation Science,1992,26(3):161-170.
  • 3TEODOROVIC D,PAVKOVIC G.A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand[J].Transportation Planning and Technology,1992,16(1):261-273.
  • 4POPOVIC J.Vehicle routing in the case of uncertain demand:a Bayesian approach[J].Transportation Planning and Technology,1995,19(1):19-29.
  • 5MILOSAVLJEVIC N,TEODOROVIC D.A fuzzy approach to the vehicle assignment problem[J].Transportation Planning and Technology,1996,20(1):33-47.
  • 6GOLDEN B L,LAPORTE G,TAILLAND E D.An adaptive memory heuristic for a class of vehicle routing problems with minmax objective[J].Computers Ops Res,1997,24(5):445-452.
  • 7HOPFIELD J J,TANK D W."Neural" computation of decisions in optimization problem [J].Biological Cybernetics,1985,52(8):141-152.
  • 8王凌,郑大钟.一种基于退火策略的混沌神经网络优化算法[J].控制理论与应用,2000,17(1):139-142. 被引量:51
  • 9袁健,刘晋.随机需求情形VRP的Hopfield神经网络解法[J].南京航空航天大学学报,2000,32(5):579-585. 被引量:16
  • 10袁健,刘晋,卢厚清.随机需求情形VRP的退火网络解法[J].系统工程理论与实践,2002,22(3):109-113. 被引量:25

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部