期刊文献+

基于对象的激光点云数据城区树木识别方法 被引量:5

Identification of urban vegetation with laser point cloud data based on object
下载PDF
导出
摘要 通常利用激光点云数据(LiDar)进行树木分类的方法是将点云内插生成数字地形模型(DTM),根据地物高程差值,在图像处理方法的基础上进行分割或分类。提出一种新的基于对象的LiDar数据树木识别方法,其最大特点是直接利用点云数据的三维空间关系进行分类,不需要将点云转换成二维图像进行处理,避免了转换过程中信息的丢失,提高了分类的精度。具体实现步骤:首先利用kd-trees组织点云数据,在局部邻域中利用点云位置和法线分别进行协方差分析,估算各点的空间特征变量,然后结合各点的回波次数和局部邻域中点云个数密度作为SVM分类器的输入变量,最后利用基于径向基函数的SVM方法实现点云的分类。实验结果表明:OA分类精度为91.21%,Kappa系数为85.62%。 The method,which applies LIDAR to distinguish trees,is to interpolate digital terrestrial model(DTM) and then to conduct segmentation or classification with the differences of features' elevation.A new method to identify trees,based on object and with LIDAR clata was put forward,thus 3D relationship among point cloud data can directly participate in classification process,and therefore there is no need to transfer 2D image from point data and information loss to a large extent can be avoid and classification accuracy can be improved.The steps are: firstly,to arrange point cloud data with kd-tree and to carry out an analysis on covariance in local neighborhood,then variables of spatial feature can be estimated;secondly,to determine input of SVM classifier with combination of echo times on points and density of point cloud in local neighborhood;lastly,to execute point cloud classification based on radial basis function with SVM.The result evidences that OA classification reaches accuracy of 91.21 % and Kappa coefficient of 85.62 %.
作者 刘峰 杨志高
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2010年第7期73-77,共5页 Journal of Central South University of Forestry & Technology
基金 中南林业科技大学青年科学基金项目(07042B) 湖南省教育厅科技基金项目(09C0999)
关键词 激光点云 空间分析 树木 分类 LiDar point cloud analysis vegetation classification
  • 相关文献

参考文献8

  • 1smith J. Use of airborne LiDar and aerial photography in the estimation of individual tree heights in forestry [ J ]. Computers & Geosciences ,2005,31 : 253 - 262.
  • 2Qichen,Dennis Baldocchi,Peng Gong, et al. Isolating Individual Trees in a Savanna Woodland Using Small Footprint LiDar Data [ J]. Photogrammetric Engineering & Remote Sensing ,2006,72 (8) : 923 - 932.
  • 3Iovan C, Boldo D, Cord M. Automatic Extraction of Urban Vegetation Structures from High Resolution Imagery and Digital Elevation Model [M]. Paris : IEEE - GRSS/ISPRS,2007 : 10 - 18.
  • 4Mahamo M, Packalen P, Peuhkurinen J, et al. Experiences and Possibilities of ALS based Forest Inventory in Finland [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Espoo, Finland, 2007, XXXVI ( 3/W52 ) : 270 - 279.
  • 5Axelsson P. DEM generation from Laser Scanner Data Using Adaptive TIN-Models [ J ]. International Archives of Photogrammetry, Remote Sensing,2000,33 (B4/1) : 110 - 117.
  • 6Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[ J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1 -2) : 85 -93.
  • 7Pauly M. Point Primitives For Interactive Modeling and Processing of 3D Geometry[ D]. ETH Zurich,2003.
  • 8Vapnik V N. The Nature of Statistical Learning Theory[M]. New York : Springer Verlag, 1995.

同被引文献60

  • 1尹文秀,陈哲,方云,王金砖,虞惠贞,吴姗,张晓峰,张明哲.荧光光谱技术在木材识别中的研究进展[J].中国口岸科学技术,2022,4(12):12-17. 被引量:3
  • 2庞勇,赵峰,李增元,周淑芳,邓广,刘清旺,陈尔学.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158. 被引量:104
  • 3赵鹏祥,李卫忠,郝红科,陈永贵.无测积手持型GPS面积测量及其精度评价[J].西北林学院学报,2004,19(4):158-161. 被引量:9
  • 4刘颖,张正,马恩林.关于有限集点分布均匀性的度量方法[J].首都师范大学学报(自然科学版),1997,18(3):10-14. 被引量:10
  • 5王雪峰,张超,唐守正.基于图像理解的树木直径抽取技术[J].林业科学,2005,41(2):16-20. 被引量:6
  • 6Michael A Lefsky, Warren B Cohen, Geoffrey G Parker, et al. LiDAR remote sensing for ecosystem studies [ J]. Bioscience, 2002, 52(1) : 19 -30.
  • 7Wagner W, Ullrich A, Melzer T, et al. From single-pulse to full-waveform airborne laser scanners: potential and practical challenges [ C ]//Proceedings of the 20th ISPRS Congress, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 2004, 35 (B3) : 201 - 205.
  • 8Popescu S C. Estimating biomass of individual pine trees using airborne LiDAR [ J]. Biomass and Bioenergy, 2007, 31 (9) : 646 - 655.
  • 9Rritberger J, Scnorr C1, Krzystek P, et al. 3D segmentation of single trees exploiting full waveform LIDAR data [ J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6) : 561 -574.
  • 10Chauve A, Mallet C, Bretar F, et al. Processing full waveform LiDAR data: modeling raw signals [ C]//Proceedings of the ISPRS Workshop "Laser Scanning 2007 and SilviLaser 2007", International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Espoo, Finland, 2007, 36(3/W52) : 102 - 107.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部