摘要
为了基于删失数据更好的估计医疗费用均值,提出了一种与以往不同的估计方法,并且在Markov假设下根据这种方法给出了一种无偏的分层估计量.采用了几种不同的方法进行数据模拟,来比较这一估计量和其他几种估计量的表现,进而说明了这一估计量的优越性和稳健性.并且还说明了在不同情况下应选择何种估计量以达到最优效果.最后,讨论了这一估计量可能的改进措施以及这一方法在回归模型中的应用.
A new method for estimating medical costs with censored data by proposing a simple stratification estimator along with a Markov hypothesis is provided. The estimator is shown to be consistent. Extensive simulation studies are used to compare the estimator with others to show that the estimator performs well in finite samples and is robust under different situations. The approach to choose the best proper estimator for a variety of circumstances is provided. Further improvement of the estimator and extensions to regression models are also discussed.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2010年第4期451-458,共8页
Journal of Fudan University:Natural Science
关键词
费用估计
删失
缺失数据
分层
功效
稳健性
生存分析
cost analysis
censoring
missing data
stratification
efficiency
robust
survival analysis