期刊文献+

卖空限制下衍生证券的定价

The Pricing of Derivative Securities under Short-selling Constraints
原文传递
导出
摘要 针对卖空限制的情形给出了投资者风险中性偏好下期权价格的一个表达式,这个价格是买卖双方能够达成一致的惟一价格.推导的关键是在卖空限制下把绝对风险厌恶度为任一常值γ的投资者的期权动态定价方程表示成一种易于分析极限γ→0或者γ→∞的形式. The option pricing formula for a risk-neutral investor in the case of short-selling constraint, which is the only price that both the writer and the buyer would accept, is obtained. The key is to rewrite the dynamic pricing equation for risk-averse investors with any constant absolute risk averse measure to a form which is easy for the analysis of the limit with γ→0or→-∞.
作者 孟卓群
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期468-474,共7页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(10325101) 国家重点基础研究发展计划(973计划)资助项目(2007CB814904)
关键词 效用最大化 卖空限制 期权定价 动态定价方程 utility maximization short selling constraint option pricing dynamic pricing equation
  • 相关文献

参考文献8

  • 1Hodges S D, Neuberger A. Optimal replication of contingent claims under transaction costs[J]. Rev Futures Markets, 1989,8: 222-239.
  • 2Frittelli M. The minimal entropy Mmrtingale measure and the valuation problem in incomplete markets [J].Math Finance, 2000,10:39- 52.
  • 3Delbaen F, Grandits P, Rheinlfinder T, et al. Exponentialhedging and entropic penalties[J]. Math Finance, 2002,12:99-123.
  • 4Rouge R, El Karoui N. Pricing via utility maximization and entropy[J]. Math Finance, 2000, 10: 259-276.
  • 5Hu Y, Imkeller P, Muller M. Utility maximization in incomplete markets[J]. AnnAppl Probab, 2005, 15: 1691-1712.
  • 6Kramkov D, Schachermayer W. The asymptotic elasticity of utility functions and optimal investment in incomplete markets[J]. AnnAppl Probab, 1999,9:904 -950.
  • 7Hugonnier J, Kramkov D, Schachermayer W. On utility based pricing of contingent claims in incomplete markets[J].Math Finance, 2005,15:203 -212.
  • 8Ilhan A, Jonsson M, Sircar R Optimal investment with derivative securities[J]. Finance Stochast, 2005, 9:585- 595.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部