期刊文献+

传递对准误差模型及其QCDKF算法 被引量:7

QCDKF algorithm for a transfer alignment system by using multiplicative quaternion error model
原文传递
导出
摘要 基于乘性四元数计算量小、精度高、非奇异性和全姿态工作特点以及大角度传递对准系统设计要求,建立了可适用于任意失准角情形的传递对准系统速度姿态匹配乘性四元数误差模型;以乘性四元数描述的载体姿态矩阵为对象,构造姿态矩阵代价函数计算乘性四元数均值,使其满足四元数规范化要求,进而计算四元数误差方差矩阵;联合中心差分卡尔曼滤波(CDKF)算法,实现传递对准系统的四元数中心差分卡尔曼滤波(QCDKF)算法.仿真结果表明:该算法能够有效解决大失准角情形下惯导系统传递对准问题,数值计算稳定性较好,计算精度和对准时间都满足系统设计要求. Based on the actual design requirements of transfer alignment system for large initial misalignment angle and the features of multiplicative quaternion which being little calculation burden, higher precision, non-singularity and all attitude working, it develops the velocity and attitude matching transfer alignment system error model with multiplicative quaternion which can be true to arbitrary magnitude misalignment angles. With the definition of multiplicative quaternion directly representing attitude matrix, it develops the method which, with the attitude matrix for the object, constructs its cost function and calculates the mean of multiplicative quaternion and its quaternion error variance matrix which can meet the normalization requirements of the quaternion mean. Jointing with the central divided difference Kalman filtering (CDKF) algorithm, the quaternion CDKF (QCDKF) algorithm of transfer alignment system for large initial misalignment angles is developed. The simulation results indicate that the QCDKF algorithm can effectively conduct transfer alignment of inertial navigation system with arbitrary magnitude misalignment angles, and have better numerical computation stability, and its calculation accuracy and alignment time meets design requirements.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第8期89-94,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60674087)
关键词 惯性导航系统 传递对准 乘性四元数 速度姿态匹配 中心差分卡尔曼滤波算法 inertial navigation system transfer alignment multiplicative quaternion velocity and at titude matching central divided difference Kalman filtering (CDKF) algorithm
  • 相关文献

参考文献9

  • 1Chung D Y, Lee J G. Comparison of SDINS in-flight alignment using equivalent error models[J].IEEE Transactions on Aerospace and Electronic Systems, 1999, 35 (3): 1 046-1 054.
  • 2Chung D Y, Lee J G. Strap-down INS error model for multi-position alignment [J].IEEE Transactions on Aerospace and Electronic Systems, 1996, 32 (4) : 1 362-1 366.
  • 3Crassidis J L, Markley F attitude estimat ance, Control and Dynamics, Unscented filtering for [J]. Journal of Guid 2003, 26(4): 536-542.
  • 4Choukroun D, Itzhaek B, Oshman Y. Novel quaternion Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42 (1) : 174- 190.
  • 5Markley F L, Cheng Y, Crassidis J L, et al. Averaging quaternions[J].Journal of Guidance, Control, and Dynamics, 2007, 30(4): 1 193-1 197.
  • 6Magnus N, Poulsen N K, Ravn O. Advances in derivative-free state estimation for nonlinear systems, Technology Report IMM-REP-1998-15 [R]. Copen hagen: Technology University of Denmark, 2000.
  • 7Oshman Y, Carmi A. Attitude estimation from vector observations using genetic-algorithm-embedded qua ternion particle filter[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 879-891.
  • 8万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1999.
  • 9熊芝兰.惯性导航系统大失准角情况下的传递对准技术研究[D].哈尔滨:哈尔滨工程大学自动化学院,2007.

共引文献4

同被引文献72

  • 1魏春岭,张洪钺,郝曙光.捷联惯导系统大方位失准角下的非线性对准[J].航天控制,2003,21(4):25-35. 被引量:21
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3顾冬晴,秦永元.船用捷联惯导系统运动中对准的UKF设计[J].系统工程与电子技术,2006,28(8):1218-1220. 被引量:8
  • 4万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1999.
  • 5Sanjeev A, Simon M, Neil G, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian traeking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 6Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10:197-208.
  • 7Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing data problems[J]. Journal of American Statistical Association, 1994, 89 (425) : 278-288.
  • 8Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems[J]. Journal of the American Statistical Association, 1998, 93(5): 1 032-1 044.
  • 9Lehn-Schiler T, Erdogmus D, Principe J C. Parzen particle filters[C]//Proceedings of IEEE Inernational Canference on Acoustics, Speech, and Signal Processing. Montreal: IEEE, 2004: 781-784.
  • 10Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94(2): 590-599.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部