期刊文献+

基于鲁棒学习的最小二乘支持向量机及其应用 被引量:22

Robust least squares support vector machine based on robust learning algorithm and its application
原文传递
导出
摘要 鉴于最小二乘支持向量机比标准支持向量机具有更高的计算效率和拟合精度,但缺少标准支持向量机的鲁棒性,即当采样数据存在奇异点或者误差变量的高斯分布假设不成立时,会导致不稳健的估计结果,提出了一种鲁棒最小二乘支持向量机方法.该方法在最小二乘支持向量机基础上,通过引入鲁棒学习方法来获得鲁棒估计.仿真分析及某湿法冶金厂的应用实例验证了该方法的可行性和有效性. Least squares support vector machine(LS-SVM) is computationally more efficient than the standard SVM, but unfortunately the robustness of standard SVM is lost. LS-SVM might lead to estimates which are less robust with respect to outliers on the data or when the assumption of a Gaussian distribution for error variables is not realistic. Therefore, an approach based on the robust least squares support vector machine(RLS-SVM) is proposed, in which robust learning algorithm(RLA) is employed to enhance the robust capability of LS-SVM. Finally, simulation analysis and the modeling of a typical plant for hydrometallurgy illustrate the effectiveness and feasibility of the presented method.
出处 《控制与决策》 EI CSCD 北大核心 2010年第8期1169-1172,1177,共5页 Control and Decision
基金 国家863计划项目(2006AA060201)
关键词 最小二乘支持向量机 奇异点 鲁棒学习 鲁棒估计 草酸钴合成过程 Least squares support vector machine Outliers. Robust learning Robust estimation Cobalt oxalate synthesis process
  • 相关文献

参考文献14

  • 1Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 2Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Process Letters, 1999, 9(3): 293-300.
  • 3Pell R J. Multiple outlier detection for multivariate calibration using robust statistical techniques[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 87-104.
  • 4Daszykowski M, Kaczmarek K, Heyden Y V, et al. Robust statistics in data analysis--A review basic concepts[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 203-219.
  • 5M~lle S F, Frese J V, Bro R. Robust methods for multivariate data analysis[J]. J of Chemometrics, 2005, 19(10): 549-563.
  • 6Kruger U, Zhou Y, Wang X, et al. Robust partial least squares regression: Algorithmic developments[J]. J of Chemometrics, 2008, 22(1): 1-13.
  • 7Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1): 85-105.
  • 8Shim J, Hwang C, Nau S. Robust LS-SVM regression using fuzzy C-means clustering[J]. Advances in Natural Computer Science, 2006, 42(21): 157-166.
  • 9Sanchez A V D. Robustization of a learning method for RBF networks[J]. Neurocomputing, 1995, 9(1): 85-94.
  • 10常玉清,王福利,王小刚,吕哲.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-244. 被引量:28

二级参考文献33

  • 1史志伟,明晓.基于模糊聚类的模糊神经网络在非定常气动力建模中的应用[J].空气动力学学报,2005,23(1):21-24. 被引量:10
  • 2MEJDELL T, SKOGESTAD S. Output estimation using multiple secondary measurements:high-purity distillation[J]. Process Systems Engineering, 1993,9(10):1641-1653.
  • 3YANG S H, WANG X Z,MCGREAVY C, et al.Soft sensor based predictive control of industrial fluid catalytic cracking processes[J]. Institution of Chemical Engineers Trans. IchemE, 1998, 76(5):499-508.
  • 4CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(2) :273-297.
  • 5VAPNIK V N. The nature of statistical learningtheory [M]. 1st ed. New York: Springer-Verlag,1995.
  • 6YAN WEIWU,SHAO HUIHE, WANG XIAOFAN.Soft sensing modeling based on support vector machine and Bayesian model selection[J].
  • 7Rosenstein M T, Cohen P R, Concepts from time series[C]. Fifteenth National Conference on Artificial Intelligence, Madison, Wisconsin, 1998.
  • 8Das G, Lin K, Mannila H, et al. Rule discovery from time series [C]. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Madison, Wisconsin, 1998.
  • 9Han J, Dong G, Yin Y. Efficient mining of partial periodic patterns in time series databases[C]. Proceedings of the fifteenth International Conference on Data Engineering, Sydney, Australia, 1999.
  • 10Mannila H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event sequences[J]. Data Mining and Knowledge Discovery, 1997, 1(3): 259-289.

共引文献38

同被引文献210

引证文献22

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部