期刊文献+

基于特征加权距离的双指数模糊子空间聚类算法 被引量:6

Double-indices fuzzy subspace clustering algorithm based on feature weighted distance
原文传递
导出
摘要 传统的模糊聚类算法(FCM)使用欧氏距离计算数据点之间的差异时,对于高维数据集聚类效果不够理想.对此,以FCM算法的目标函数为基础,用特征加权距离代替传统的欧氏距离,同时向约束条件中引入指数γ和β,提出了一种基于特征加权距离的双指数模糊子空间聚类算法,并讨论了该算法的收敛性.实验表明,所提出算法可以有效提取高维数据集各类别的相关特征,在真实数据集上有较好的聚类效果. The conventional fuzzy clustering algorithms(FCM) fall short when clustering is performed in high dimensional spaces, because they use the Euclidean metric to compute the distance between data points. In this paper, a fuzzy subspace clustering algorithm is proposed by introducing the feature weighted distance and the power exponent γ and β into the objective function of FCM. The global convergence property of the proposed algorithm is discussed. The experimental results on real dataset show the effectiveness of the algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2010年第8期1207-1210,共4页 Control and Decision
基金 国家自然科学基金项目(60903100) 江苏省自然科学基金项目(BK2009067) 江南大学青年基金项目(2009LQN07)
关键词 模糊聚类 特征加权距离 全局收敛性 非平衡数据集 Fuzzy clustering Feature weighted distance Global convergence Unbalanced dataset
  • 相关文献

参考文献2

二级参考文献21

  • 1修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 2Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models [J]. Journal of Approximate Reasoning, 2003, 32(2): 85-102
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum, 1081
  • 4Bezdek J C, Hathaway R J, Sahin M J, et al. Convergence theory for fuzzy c-means: Counterexamples and repairs [J]. IEEE Trans on SMC, 1987, 17(5): 873-877
  • 5Zhang Y J, Liu Z Q. Self-splitting competitive learning: A new on-line clustering paradigm [J]. IEEE Trans on Neural Network, 2002, 13(2) : 369-380
  • 6Wu S H, Liew A W, Hong Y, et al. Cluster analysis of gene expression data based on self-splitting and merging competitive learning [J]. IEEE Trans on Information Technology in Biomedicine, 2004, 8 (1) : 5-15
  • 7Xu L, Krzyak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection [J]. IEEE Trans on Neural Network, 1993, 4(4): 636-649
  • 8Blake C L, Merz C J. UCI repository of machine learning databases [D]. Irvine, CA: University of California, Department of Information and Computer Science, 1998
  • 9Yeung K Y, Medvedovie M, Bumgarner R. Clustering gene expression data with repeated measurements [J]. Genome Biology, 2003, 4(5): R34
  • 10Chung F L, Wang S T, et al. Clustering analysis of gene expression data based on semi-supervised clustering algorithm [J]. Soft Computing, 2006, 1(11): 981-994

共引文献209

同被引文献93

  • 1王丙参,刘鹤飞,魏艳华.改进的传统距离聚类方法及应用[J].统计与决策,2021,37(4):64-68. 被引量:10
  • 2邓赵红,王士同.鲁棒性的模糊聚类神经网络[J].软件学报,2005,16(8):1415-1422. 被引量:11
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 5Xu R,Wunsch D. Survey of clustering algorithms[J]. IEEETrans on Neural Networks, 2005, 16(3): 645-678.
  • 6Jain A K, Murty M N, Flynn P J. Data clustering: Areview[J]. ACM Computing Surveys, 1999, 31(3): 264-323.
  • 7Jain A K. Data clustering: 50 years beyond κ-means[J].Pattern Recognition Letters, 2010, 31(8): 651-666.
  • 8Goldberger J, Tassa T. A hierarchical clustering algorithmbased on the Hungarian method[J]. Pattern RecognitionLetters, 2008, 29(1): 1632-1638.
  • 9Kumar P, Krishna P R, Bapi R S, et al. Rough clustering ofsequential data[J]. Data & Knowledge Engineering, 2007,3(2): 183-199.
  • 10Cilibrasi R L, Vitányi P MB. A fast quartet tree heuristicfor hierarchical clustering[J]. Pattern Recognition, 2011,44(3): 662-677.

引证文献6

二级引证文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部