期刊文献+

不确定性下非合作博弈强Nash均衡的存在性 被引量:18

Existence of strong Nash equilibrium for non-cooperative games under uncertainty
原文传递
导出
摘要 在已知不确定参数变化范围的假设下,研究了非合作博弈强Nash均衡的存在性问题.基于经典非合作博弈的强Berge均衡及帕雷托均衡的概念,结合非合作博弈NS均衡,定义了不确定性下非合作博弈的帕雷托强Berge和强Nash均衡的概念,并借助Ky Fan不等式证明其存在性.最后利用算例验证了其可行性和有效性. Under the assumption that the domain of the undetermined parameters is known,the existence of strong Nash equilibrium for non-cooperative games is investigated.Combined the concept of strong Berge equilibrium and Pareto equilibrium with NS-equilibrium for non-cooperative games,the notions of Pareto strong Berge equilibrium and strong Nash equilibrium under uncertainty are defined,and the existence theorem of the equilibrium is also provided by means of the Ky Fan inequality.Finally,a numeric example illustrates the effectiveness and feasibility of the proposed method.
作者 张会娟 张强
出处 《控制与决策》 EI CSCD 北大核心 2010年第8期1251-1254,1260,共5页 Control and Decision
基金 国家自然科学基金项目(70471063 70771010) 国家985工程2期基金项目(107008200400024)
关键词 非合作博弈 强Nash均衡 KYFAN不等式 不确定性 Non-cooperative games Strong Nash equilibrium Ky Fan inequality Uncertainty
  • 相关文献

参考文献12

  • 1Nash J. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(5): 286-295.
  • 2Schelling T. The strategy of conflict[M]. Cambridge: Harvard University Press, 1960.
  • 3Aumann R J. Subjectivity and correlation in randomized strategies[J]. J of Mathematical Economics, 1974, 1(3): 67- 96.
  • 4Selten R. Reexamination of the perfenctness concept for equilibrium points in extensive games[J]. Int J of Game Theory, 1975, 4(1): 25-55.
  • 5Harsanyi J C. Games with incomplete information played by Bayesian players[J]. Management Science, 1967, 14:159-182, 320-334, 486-502.
  • 6Berge C. Theorie generale des jeux on-personnes[M]. Pads: Gauthier Villars, 1957.
  • 7Aumann J P. Acceptable points in general cooperative n-person games[M]. Prinston: Prinston University Press,1959.
  • 8Larbani M, Nessah R. Sur l'equilibre fort selon Berge 'Strong Berge equilibrium' [J]. RAIRO Operations Research, 2001, 35(2): 439-451.
  • 9Zhukovskii V I. Linear quadratic differential games[M]. Naoukova Doumka: Kiev, 1994.
  • 10Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty[J]. European J of Operational Research, 1999, 117(1): 145-156.

同被引文献143

引证文献18

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部