摘要
通过Monte-Carlo模拟,研究了基于NW网络的两种类集团不可逆聚集-湮没过程的动力学行为.在系统中,两个同种类集团相遇,将不可逆地聚集成一个更大的集团;不同种类的两个集团相遇,则发生部分湮没反应.模拟结果表明,1)当捷径量化参数p相对较大或较小时,系统经较长时间演化后,集团密度c(t)和粒子密度g(t)呈现幂律形式,c(t)∝t-α和g(t)∝t-β,其中幂指数α和β满足α=2β的关系;2)当p为其他值时,集团密度和粒子密度随时间按非严格的幂律形式演化.模拟结果与文献[10,11]的理论分析相符得很好.
Kinetics of diffusion-limitied aggregation-annihilation processes on NW small-world networks is investigated by Monte Carlo simulation. In the system,if two clusters of the same species meet at the same node,they will aggregate and form a large one; while if two clusters of different species meet at the same node,they will annihilate each other. Simulation results show that,if the value of p (a parameter that quantifies the number of shortcuts) is large or small enough,the concentration of clusters c(t) and the concentration of particles g(t) follow power laws at large times,i. e. c(t)∝t-α and g(t)∝t-β. Moreover,the relation between the exponents α and β is found to satisfy α = 2β. However,if p is of medium value,the concentration of clusters and the concentration of particles do not follow the power laws exactly. Our simulation results agree with the reported theoretical analysis very well.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2010年第9期6681-6688,共8页
Acta Physica Sinica
基金
国家自然科学基金(批准号:10775104
10875086
10305009)资助的课题~~