期刊文献+

Negative differential resistance behaviour in N-doped crossed graphene nanoribbons 被引量:1

Negative differential resistance behaviour in N-doped crossed graphene nanoribbons
下载PDF
导出
摘要 By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested. By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期531-535,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos.10325415 and 50504017) the Natural Science Foundation of Hunan Province,China (Grant No.07JJ3102) the Science Develop Foundation of Central South University,China (Grant Nos.08SDF02 and 09SDF09)
关键词 transport properties negative differential resistance FIRST-PRINCIPLES crossed graphene nanoribbons transport properties, negative differential resistance, first-principles, crossed graphene nanoribbons
  • 相关文献

参考文献29

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Filrsov A A 2004 Science 306 666.
  • 2Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197.
  • 3Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201.
  • 4Berger C, Song Z M, LiX B, Wu X S, Brown N, Naud C, Mayou D, Lit B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191.
  • 5Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B 19 037202.
  • 6Son Y W, Cohen M L and Louie S G 2006 Nature 444 347.
  • 7Son W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 972 16803.
  • 8Rosales L, Pacheco M, Barticevic Z, Latgg A and Orellana P A 2009 Nanotechnology 20 095705.
  • 9Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rew Lett. 102 096803.
  • 10Zhou B H, Duan Z G, Zhou B L and Zhou G H 2010 Chin. Phys. B 19 037204.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部