期刊文献+

Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption

Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption
下载PDF
导出
摘要 We theoretically show that H atoms can be chemically adsorbed onto the surface of the Si-C heterofullerene- based nanotubes. The adsorbing energy of the H atom on Si-C heterofullerene-based nanotubes is in the range of 4.28-5.66 eV without any barrier for the H atom to approach to the Si-C heterofullerene-based nanotubes. The band-gap of Si-C heterofullerene-based nanotubes can be dramatically modified by introducing dopant states, i.e., there is a transition from semiconductor to conductor of the Si-C heterofullerene-based nanotubes induced by the adsorption of the H atom. These results actually open a way to tune electronic properties of heterofullerene-based nanotubes and thus may propose an efficient pathway for band structure engineering. We theoretically show that H atoms can be chemically adsorbed onto the surface of the Si-C heterofullerene- based nanotubes. The adsorbing energy of the H atom on Si-C heterofullerene-based nanotubes is in the range of 4.28-5.66 eV without any barrier for the H atom to approach to the Si-C heterofullerene-based nanotubes. The band-gap of Si-C heterofullerene-based nanotubes can be dramatically modified by introducing dopant states, i.e., there is a transition from semiconductor to conductor of the Si-C heterofullerene-based nanotubes induced by the adsorption of the H atom. These results actually open a way to tune electronic properties of heterofullerene-based nanotubes and thus may propose an efficient pathway for band structure engineering.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第9期183-186,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 50525206 and U0734004, and the Ministry of Education (106126), the Postdoctoral Science Foundation of China under Grant No 20090450903, and Shanghai Supercomputer Center.
  • 相关文献

参考文献28

  • 1Kroto H W et al 1985 Nature 318 162.
  • 2Iijima S 1991 Nature 354 56.
  • 3Branz Wet al 1998 Y. Chem. Phys. 109 3425.
  • 4Clemmer D E et al 1994 Nature 372 248.
  • 5Yu R et al 1995 J. Phys. Chem. 99 1818.
  • 6Guo T et al 1991 J. Chem. Phys. 95 4948.
  • 7Fye J L and Jarrold M F 1997 J. Phys. Chem. A 101 1836.
  • 8Ray C et al 1998 Phys. Rev. Lett. 80 5365.
  • 9Pellarin Met al 1999 J. Chem. Phys. 110 6927.
  • 10Fu C C et al 2001 Phys. Rev. B 63 085411.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部