摘要
The analysis based on series equivalent circuit indicates that the resistance of electrode layers is the major factor limiting the current density of polymer light-emitting diodes (PLEDs) at higher voltages. The conductivity of 790 S/cm for the PEDOT:PSS film is achieved by secondary doping. At a thickness of 240 nm, the sheet resistance of the polymer layer is 51 Ω/sq, which is comparable to that of lTO films. The current density and luminance of the PLEDs with the polymer anode layer is higher than the ITO anode device, suggesting that it is feasible to replace ITO anode with a highly conductive polymer in PLEDs.
The analysis based on series equivalent circuit indicates that the resistance of electrode layers is the major factor limiting the current density of polymer light-emitting diodes (PLEDs) at higher voltages. The conductivity of 790 S/cm for the PEDOT:PSS film is achieved by secondary doping. At a thickness of 240 nm, the sheet resistance of the polymer layer is 51 Ω/sq, which is comparable to that of lTO films. The current density and luminance of the PLEDs with the polymer anode layer is higher than the ITO anode device, suggesting that it is feasible to replace ITO anode with a highly conductive polymer in PLEDs.
基金
Supported by the National Natural Science Foundation of China under Grant No 60776039, and Beijing Key Laboratory of Printing &~ Packaging Materials and Technology, Beijing Institute of Graphic Communication.