期刊文献+

Wetting Layer Effect on Optical Gain of Strained CdTe/ZnTe Pyramidal Quantum Dots

Wetting Layer Effect on Optical Gain of Strained CdTe/ZnTe Pyramidal Quantum Dots
下载PDF
导出
摘要 The optical properties of strained CdTe/ZnTe pyramidal quantum dots (QDs) are investigated as a function of the wetting layer thickness using an eight-band strain-dependent k.p Hamiltonian. The ground-state subband energies in the conduction and valence bands rapidly decreases with the increasing wetting layer thickness. This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effect. The optical gain peak on the shorter wavelength side decreases with the increasing wetting layer thickness. On the other hand, the gain peak on the longer wavelength side is nearly independent of the wetting layer thickness. The decrease in the gain peak on the shorter wavelength side is related to the decrease in matrix elements corresponding to transitions between higher subbands such as (3, 4) and (4, 3). The optical properties of strained CdTe/ZnTe pyramidal quantum dots (QDs) are investigated as a function of the wetting layer thickness using an eight-band strain-dependent k.p Hamiltonian. The ground-state subband energies in the conduction and valence bands rapidly decreases with the increasing wetting layer thickness. This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effect. The optical gain peak on the shorter wavelength side decreases with the increasing wetting layer thickness. On the other hand, the gain peak on the longer wavelength side is nearly independent of the wetting layer thickness. The decrease in the gain peak on the shorter wavelength side is related to the decrease in matrix elements corresponding to transitions between higher subbands such as (3, 4) and (4, 3).
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第9期233-236,共4页 中国物理快报(英文版)
  • 相关文献

参考文献20

  • 1Asada M et al 1986 IEEE J. Quantum Electron. 22 1915.
  • 2Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum Dot Heterostructure (New York: Wiley).
  • 3Yang C S et al 2007 Nanotechnolo9y 18 385602.
  • 4Schwarzl T et al 2008 Phys. Rev. B 78 165320.
  • 5Lee Set al 2004 Phys. Rev. B 70 125307.
  • 6Melnik R V N and ~Villatzen M 2004 Nanotechnology 15 1.
  • 7Hong W P et al 2009 J. Korean Phys. Soc. 55 1607.
  • 8Hong W Pet al 2009 J. Korean Phys. Soc. 55 2496.
  • 9Park S -H et al 2004 J. Appl. Phys. 96 2055.
  • 10Kwon Y W and Bang H 2000 The Finite Element Method using Matlab (New York: CRC).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部