期刊文献+

高光谱遥感图像端元提取的零空间光谱投影算法 被引量:9

NULL SPACE SPECTRAL PROJECTION ALGORITHM FOR HYPERSPECTRAL IMAGE ENDMEMBER EXTRACTION
下载PDF
导出
摘要 端元提取技术是高光谱遥感图像光谱解混的关键.在线性光谱混合分析中,首先引入了高光谱遥感图像经过零空间光谱投影后具有单形体的凸不变性.在此基础上,提出了零空间光谱投影算法,通过设计各种度量和准则,制定不同的单次端元提取策略,灵活地实现算法.经过证明,零空间光谱投影算法是对基于子空间投影距离算法(包括零空间投影距离算法与经典正交子空间投影算法)的进一步延伸,提供了更多的端元提取策略.实验结果表明,零空间光谱投影算法在模拟图像以及真实高光谱遥感图像中都能够有效地提取出图像中的各种端元. Endmember extraction is the key procedure for spectral unmixing of hyperspectral remote sensing image. In the linear spectral mixture analysis, a convex invariance of simplex was introduced when hyperspectral remote sensing image was projected into null space of spectral signature matrix of endmembers. On the basis of the invariance, a null space spectral projection algorithm (NSSPA) was proposed. One-unit endmember extraction strategies were established to implement the algorithm in a flexible way by designing different metrics and principles. It is proved that the proposed algorithm extends the algorithm based on subspace projection distance, including the classical orthogonal subspace projection (OSP) algorithm and the null space maximal distance algorithm. The algorithm provides diversified strategies for endmember extraction. The experimental results indicate that NSSPA demonstrates excellent performance of endmember extraction both in the simulated and real hyperspectral remote sensing images.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第4期307-311,320,共6页 Journal of Infrared and Millimeter Waves
基金 国家863项目(2008AA12Z113) 国家973项目(2009CB723902) 国家自然科学基金项目(40901232 40901225)资助
关键词 高光谱遥感 光谱解混 端元 单形体 零空间 hyperspectral remote sensing spectral unmixing endmember simplex null space
  • 相关文献

参考文献10

  • 1Chang C I.Hyperspectral data exploitation:Theory and applications[M].New Jersey:Wiley-Interscience Press,2007,1-19.
  • 2Boardman J W,Kruse F A,Green R O.Mapping target signatures via partial unmixing of AVIRIS data[C].In Fifth JPL Airborne Earth Science Workshop.Pasadena,1995.CA:JPI,1995,23-26.
  • 3Winter M E.N-FINDR:an Algorithm for fast autonomous spectral endmember determination in hyperspectral data[C].In SPIE Imaging Spectrometry V.San Diego CA,1999.Washington:SPLE Pub,1999,266-275.
  • 4Chang C I.Hyperspectral imaging:techniques for spectral detection and classification[M].New York:Kluwer Academic/Plenum Publishers,2003,73-88.
  • 5Nascimento J M P,Dias J M B.Vertex component analysis:A fast algorithm to unmix hyperspectral data[J].IEEE Trans.Geosci.Remote Sensing,2005,43(4):898-910.
  • 6Chang C I,Wu C C,Liu W,et al.A new growing method for simplex-based endmember extraction algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(10):2804-2819.
  • 7Bajorski P.Simplex projection methods for selection of endmembers in hyperspectral imagery[C].In IEEE International Geoscience and Remote Sensing Symposium.Anchorage Alaska,2004.USA:IEEE Press,2004,5:3207-3210.
  • 8Zhang J K,Rivard B,Rogge D M.The successive projection algorithm(SPA),an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data[J].Sensors,2008,8(2):1321-1342.
  • 9罗文斐,钟亮,张兵,高连如.基于子空间距离的高光谱图像光谱解混算法[J].自然科学进展,2008,18(10):1175-1180. 被引量:4
  • 10Abrams M,Ashley R,Rowan L,et al.Mapping of hydrothermal alteration in the Cuprite Mining District,Nevada,using aircraft scanner images for the spectral region 0.46 to 2.36 mm[J].Geology,1997,5(12):713-718.

二级参考文献22

  • 1耿修瑞,张兵,张霞,郑兰芬.一种基于高维空间凸面单形体体积的高光谱图像解混算法[J].自然科学进展,2004,14(7):810-814. 被引量:21
  • 2Chang CI. Hyperspectral Data Exploitation: Theory and Applications, New Jersey: Wiley-Interseienee Press, 2007, 1-19
  • 3Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Processing Magazine, 2002, 19(1): 44-57
  • 4Keshava N. A survey of spectral unmixing algorithms. Lincoln Laboratory Journal, 2003, 14(1): 55-58
  • 5Boardman JW, Kruse FA, Green RO. Mapping target signatures via partial unmixing of AVIRIS data. In.. Fifth JPL Airborne Earth Science Workshop. Pasadena, 1995. CA: JPI, 1995, 23-26
  • 6Winter ME. N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: SPIE Imaging Spectrometry Ⅴ. San Diego CA, 1999. Washington: SPLE Pub, 1999, 266-275
  • 7Nascimento JMP, Dias JMB. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sensing, 2005, 43(4): 898-910
  • 8Chang CI, Wu CC, Liu W, et al. A new growing method for simplex-based endmember extraction algorithm. IEEE Transactions on Geoseienee and Remote Sensing, 2006, 44 (10): 2804-2819
  • 9Bajorski P. Simplex projection methods for selection of endmemhers in hyperspectral imagery. In: IEEE International Geoscience and Remote Sensing Symposium. Anchorage Alaska, 2004. USA: IEEE Press, 2004, 3207 3210
  • 10Craig MD. Minimum-volume transforms for remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 542-552

共引文献3

同被引文献159

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部