摘要
本文研究了服务时间分别服从Erlang分布和指数分布的两个不同服务台并联的可修排队系统,其中服务台1完全可靠,服务台2可能发生故障。通过构建系统状态的拟生灭过程,求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值算例。
In this paper,we study a repairable queueing system with two different servers whose service times follow Erlang distribution and exponential distribution respectively,where Server 1 is perfectly reliable and Server 2 is subject to breakdown.By establishing the QBD process of system states,we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.Some performance measures of the system and numerical illustrations are persented.
出处
《运筹与管理》
CSCD
北大核心
2010年第4期78-84,共7页
Operations Research and Management Science
基金
国家自然科学基金资助项目(70671088)
关键词
排队系统
可靠性
拟生灭过程
矩阵几何解法
平均队长
queuing system
reliability
quasi-birth-and-death process
matrix-geometric solution method
expected queue length