期刊文献+

两个不同服务台的M/(Ek,M)/2可修排队系统的矩阵几何解 被引量:4

Matrix-Geometric Solution of an M/(Ek,M)/2 Repariable Queueing System with Two Heterogeneous Servers
下载PDF
导出
摘要 本文研究了服务时间分别服从Erlang分布和指数分布的两个不同服务台并联的可修排队系统,其中服务台1完全可靠,服务台2可能发生故障。通过构建系统状态的拟生灭过程,求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值算例。 In this paper,we study a repairable queueing system with two different servers whose service times follow Erlang distribution and exponential distribution respectively,where Server 1 is perfectly reliable and Server 2 is subject to breakdown.By establishing the QBD process of system states,we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.Some performance measures of the system and numerical illustrations are persented.
机构地区 燕山大学理学院
出处 《运筹与管理》 CSCD 北大核心 2010年第4期78-84,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70671088)
关键词 排队系统 可靠性 拟生灭过程 矩阵几何解法 平均队长 queuing system reliability quasi-birth-and-death process matrix-geometric solution method expected queue length
  • 相关文献

参考文献5

  • 1Vinod B.Unreliable queueing systems[J].Computers and Operations Research,1985,12:322-340.
  • 2Wang K H,Chang Y C.Cost analysis of a finite M/M/R queueing system with balking,reneging and server breakdowns[J].Mathematical Methods of Operations Research,2002,56:169-180.
  • 3Yue D,Yue W.Block-partitioning matrix solution of M/M/R/N queuing system with balking,reneging and server breakdowns[J].Journal of Industrial and Management Optimization,2009,5(3):417-430.
  • 4余君,岳德权,田瑞玲.两个不同服务台的可修排队系统的矩阵几何解[J].应用数学学报,2008,31(5):894-900. 被引量:6
  • 5Neuts M F.Matrix-geometric solutions in stochastic models:an algorithmic approach[M].Baltimore,MD:Johns Hopkins University Press,1981.

二级参考文献9

  • 1Tang Y H, Tang X W. Queuing Theory: Basis and Analysis Technology. Beijing: Science Press, 2006.
  • 2Mitrany I L, Avi-Itzhak B. A Many-server Queue with Service Interruptions. Operations Research, 1968, 16:628-638.
  • 3Neuts M F, Lucantoni D M. A Markovian Queue with N Servers Subject to Breakdowns and Repairs. Management Science, 1979, 25:849-861.
  • 4Vinod B. Unreliable Queueing Systems. Computers and Operations Research, 1985, 12:322-340.
  • 5Wang K H, Chang Y C. Cost Analysis of a Finite M/M/R Queueing System with Balking, Reneging and Server Breakdowns. Mathematical Methods of Operations Research, 2002, 56:169-180.
  • 6Singh V P. Two-server Markovian Queues with Balking: Heterogeneous vs. Homogeneous Servers, Operations Research, 1970, 18:145-159.
  • 7Kumar B K, Madheswari S P. An M/M/2 Queueing System with Heterogeneous Servers and Multiple Vacations. Mathematical and Computer Modelling, 2005, 41:1415-1429.
  • 8Mandan K C, Abu-Dayyeh W, Taiyyan F. A Two Server Queue with Bernoulli Schedules and a Single Vacation Policy. Applied Mathematics and Computation, 2003, 145:59-71.
  • 9Neuts M F. Matrix-geometric Solutions in Stochastic Models: an Algorithmic Approach. Baltimore, MD: Johns Hopkins University Press, 1981.

共引文献5

同被引文献20

  • 1魏瑛源,唐应辉.N个不同部件串联而成的M/G/1可修排队系统[J].系统工程理论与实践,2004,24(11):106-110. 被引量:9
  • 2孙薇,王勇.简单串联服务系统的分析及应用[J].哈尔滨工业大学学报,2006,38(5):808-810. 被引量:1
  • 3马占友,刘洺辛,徐秀丽,田乃硕.混合延迟消失制Geo_1■Geo_2/Geo_1,Geo_2/s/s+K排队系统[J].系统工程理论与实践,2007,27(1):91-98. 被引量:4
  • 4Boudewijn,R.Haverkort,Aad P.A.van Moorsel,Arvid Dijkstra.MGMtool:A performance modelling toolbased on matrix geometric techniquesComputerPerformance Evaluation :Modelling Techniques andTools,1993.
  • 5Taoyu Li,Minghua Chen,Maoke Chen,Dah-ming Chiu.Queningmodels for peer-to-peer systemsProceedings of the thInternational Workshop on Peer-to-Peer SystemsIPTPS,2009.
  • 6王楠,王金亭,高晋芳.异步服务的M/M/2重试排队算法[J].北京交通大学学报,2007,31(6):100-103. 被引量:1
  • 7S?ren Asmussen,Jakob R. M?ller.Calculation of the Steady State Waiting Time Distribution in GI/PH/c and MAP/PH/c Queues[J].Queueing Systems (-).2001(1-3)
  • 8Neuts M F.Structured Stochastic Matrices of M/G/1 Type and Their Applications[]..1989
  • 9Morrison J R,Bortnick B,Martin D P.PerformanceEvaluation of Serial Photolithography Clusters:QueueingModels[].Throughput and Workload Sequencing.2006
  • 10Houdt B V.A Phase-Type Representation for theQueue Length Distribution of a Semi-MarkovianQueue[]..2010

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部