期刊文献+

基于空域相关的RBF神经网络混沌时间序列预测研究

Prediction of Chaotic Time Series Based on Spatial Correlation Filtering and RBF Neural Network
下载PDF
导出
摘要 与现有预测方法比较,神经网络在混沌时间序列预测中具有优势。利用RBF神经网络对混沌Lorenz时间序列的预测进行仿真研究,仿真结果表明:在单步直接预测、单步间接预测、多步直接预测和多步间接预测中,多步间接预测是其中最有效的方式。 The significance of chaotic time series is introduced and the predictability of chaotic time series is theoretically analyzed.Then,the deficiency of the existed prediction methods and the predictability limitation of chaotic time series are discussed,and the advantages of neural network in chaotic time series prediction are shown.Meanwhile,the chaotic Lorenz time series prediction is studied by simulation in RBF neural network.The simulation shows that the multi-step indirect predication is the most effective method in the four prediction methods,such as single-step direct predication,single-step indirect predication,multi-step direct predication and multi-step indirect predication.
机构地区 五邑大学
出处 《江苏广播电视大学学报》 2010年第3期77-80,共4页 Journal of Jiangsu Radio & Television University
关键词 混沌时间序列 RBF神经网络 直接预测 间接预测 chaotic time series RBF neural network direct prediction indirect predication
  • 相关文献

参考文献4

二级参考文献50

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部