5-连通的收缩三元组(英文)
Contracts Triplets in 5-connected Graphs
摘要
证明了任意5-连通图G存在一条路P满足|V(P)|=3使得G-P是3-连通,在k=3的情形推广了W.Mader的结果.
This paper shows that every 5-connected graph contains a path P with |V(P)|=3 such that G-P is 3-connected,which generalizes the result of W. Mader for k=3.
出处
《广西师范学院学报(自然科学版)》
2010年第2期1-6,10,共7页
Journal of Guangxi Teachers Education University(Natural Science Edition)
关键词
5-连通图
收缩
三元组
5-connected graph
contracts
triplet
参考文献12
-
1THOMASSEN C.Non-separating induced cycles in k-connected graphs[J].J Graph Theory,1981(5):351-354.
-
2EGAWA Y.Cycles in k-connected graphs whose delection results in (k-2)-connected graphs[J].J Combin Theory:Ser B,1987,42:371-377.
-
3EGAWA Y,et al.Nonseparating induced cycles consisting of contractible edges in k-connected graphs[J/OL].Electronic Notes in Discrete Mathematics,2002,11:253-264.
-
4MADER W.Connectivity Keeping Paths in k-Connected Graphs[J].Journal of Graph Theory,to appear.
-
5BONDY J A,MURTY U S R.Graph Theory with Applications[M].MacMillan,1976.
-
6MADER W.Generalizations of critical connectivity of graphs[J].Discrete Math,1988,72:267-283.
-
7SU Jianji.Vertices of degree 5 in contraction critical 5-connected graphs[J].J Guangxi Normal University,1997(3):12-16(in Chinese).
-
8KRIESELL M.Triangle density and contractibility,Combinatorics probability,computing,2005,14(1-2):133-146.
-
9QIN Chengfu,YUAN Xudong,SU Jianji.Some properties of contraction critical 5-connected graphs[J].Discrete Mathematics,2008,308:5742-5756.
-
10QIN Chengfu,GUO Xiaofeng.Contractible edges of k-connected graph for k = 4,5[J].Ars Combinatorics,to appear.
-
1蔡楠.含有逆断面的正则半群[J].科学技术与工程,2007,7(17):4417-4418.
-
2李敏.关于自然数因子中互素对的计算问题[J].纺织高校基础科学学报,2012,25(4):410-412. 被引量:1
-
3陆骋怀,储文松.单纯三重有向三元系的相交数[J].上海交通大学学报,1999,33(6):666-670.
-
4邱晓龙.τ-rigid对象和rigid对象[J].厦门大学学报(自然科学版),2016,55(1):82-85.
-
5王澜.乘积Poisson流形上的零Dirac结构(英文)[J].北京大学学报(自然科学版),2004,40(5):687-695.
-
6康庆德,田子红.幂等对称拟群的超大集[J].南开大学学报(自然科学版),2004,37(2):67-70. 被引量:1
-
7何立国,钱国华.有限群的中心化子指数[J].数学年刊(A辑),2005,26(2):229-232.
-
8陈盛辉.具有高聚类系数的加权网络演化模型[J].福建师范大学学报(自然科学版),2013,29(1):20-24. 被引量:1