期刊文献+

基于改进EM算法的分布式MIMO系统联合参数估计 被引量:3

Joint parameter estimation for distributed MIMO system based on improved EM algorithm
下载PDF
导出
摘要 鉴于采用最大似然算法估计分布式多天线系统的信道增益与频偏存在多维优化使计算复杂度高的缺陷,以及采用期望最大化(EM)算法存在收敛速度慢、对初值依赖性大的不足,而期望条件最大化(ECM)算法用一系列计算简单的CM步来代替一个复杂的M步,弱化了初值对收敛性的影响.综合考虑ECM算法与最大似然(ML)估计算法来优化EM的收敛过程,提出了一种高效稳定的EM算法.该算法在CM步取得频偏的更新值后,通过ML的结果来更新信道增益.仿真结果表明:该算法对初值的依赖性较低、计算简单且稳定性高,结合空间选择期望最大化(SAGE)方法后能大幅提高收敛速度,且所得估计值的均方误差(MSE)能够逼近Cramer-Rao界(CRB). In consideration of the drawback of high computational complexity related to multi-dimentional optimization of the maximum-likelihood algorithm to estimate the channel gain and the frequency offset for distributed MIMO;system,and the problems of slow convergence rate of the Expectation-Maximization(EM)algorithm and its dependence on the initialization values,the Expectation Conditional Maximization(ECM)Algorithm reduces the effect of the initialization values with a series of easy computing CM step instead of a complicated M step.This paper optimizes the convergence process of EM algorithm by combining the ECM algorithm and the ML algorithm simultaneously,after acquiring the latest value of frequency offset at CM step to update the channel gain by the result of ML,and presents a EM type algorithm which has high efficient and stability.From simulation results we can see the presented algorithm has low sensitive to initialization values,simply computational and high stability properties.Combining with the Space-alternating generalized expectation maximization(SAGE)algorithm the algorithm can improve the convergence rate significantly and the mean-square-error(MSE)can approach the Cramer-Rao bound.
出处 《上海师范大学学报(自然科学版)》 2010年第4期380-384,共5页 Journal of Shanghai Normal University(Natural Sciences)
基金 上海市教委项目(CL200516)
关键词 最大似然(ML)估计 期望最大化(EM) 信道估计 频偏 均方误差(MSE) ML estimation expectation-maximization channel estimation frequency offset mean-square-error
  • 相关文献

参考文献10

  • 1FOSCHINI G J,GANS M J.On limits of wireless communications in a fading environment when using multiple antennas[J].Wireless Personal Communications,1998,6(3):311-335.
  • 2TAROKH V,JAFARKHINA H,CALDERBANK A R.Space-time block codes from orthogonal designs[J].IEEE Trans Inform Theory,1999,45(10):1456-1467.
  • 3BESSON O,STOICA P.On parameter estimation of MIMO flat fading channels with frequency offsets[J].IEEE Trans Signal Processing,2003,51(3):602-613.
  • 4YAO Y,NG T S.Correlation-based frequency offset estimation in MIMO system[J].IEEE Veh Technol Conf,2003,1:438-442.
  • 5YONG S,XIONG Z X,WANG X D.EM-based iterative receiver design with carrier-frequency offset estimation for MIMO OFDM systems[J].IEEE Trans Commun,2005,53(4):581-586.
  • 6MOON T K.The expectation-maximization algorithm[J].IEEE Signal Processing Mag,1996,13:47-60.
  • 7PHAM T H,NALLANATHAN A,LIANG Y C.Joint channel and frequency offset estimation in distributed MIMO flat-fading channels[J].IEEE Trans Wireless Commu,2008,7(2):648-656.
  • 8MENG X L,RUBIN D B.Maximum likelihood estimation via the ECM algorithm:A general framework[J].Biometrika,1993,80(2):267-278.
  • 9FESLER T A,HERO A O.Space-alternating generalized expectation maximization algorithm[J].IEEE Trans Signal Processing,1994,42(10):2664-2677.
  • 10ZHANG J,LI L,SI Z.Survy study for MIMO Synchorinization system[M] ∥RAOOF K,ZHOU H B.Advanced MIMO systems.New York:Scientific Research Publishing,2009:85-110.

同被引文献21

  • 1XU K, SHEN Y H. Timing synchronization using cross ambiguity function for MIMO - OFDM systems with distributed an- tennas [ J ]. AEU - International Journal of Electronics and Communications, 2010,64 ( 1 ) : 82 - 86.
  • 2XIE Y, GEORGHIADES C N. Two EM -type channel estimation algorithm for OFDM with transmitter diversity [ J ]. IEEE Transactionon Communications,2003,51 ( 1 ) : 106 - 115.
  • 3PUN M O, MORELLI M, KUO C C. Iterative detection and frequency synchronization for generalized OFDMA uplink trans- missions[ J]. IEEE Transactionon Wireless Communications ,2007,5 ( 11 ) :629 - 639.
  • 4PHAM T H, LIANG Y C. Joint channel and frequency offset estimation in distributed MIMO flat-fading channels[ J]. IEEE Trans on Wireless Commu ,2008,7 (2) :648 - 656.
  • 5ZIA A, KIRUBARAJAN T, REILLY J P, et al. An EM Algorithm for nonlinear state estimation with model uncertainties [ C ]//IEEE Transactions on Signal Processing, Canada: McMaster University ,2008:921 - 936.
  • 6YAO Y, NG T S. Correlation-Based Frequency offset Estimation in MIMO system [ C ] Proc IEEE Veh Technol Conf,2003 : 438 - 442.
  • 7景源,殷福亮,曾硕.基于粒子滤波的MIMO-OFDM时变信道半盲估计[J].通信学报,2007,28(8):67-75. 被引量:12
  • 8Du Jian,Lei Xia,Li Shanqian. Multiple Frequency Offsets Pre-correction Based on Enhanced Limited Feedback Precoding for Distributed MIMO System[A].Chengdu,China,2008.
  • 9赵树杰;赵建勋.信号检测与估计理论[M]{H}北京:清华大学出版社,2005277-280.
  • 10Besson O,Stoica P. On Parameter Estimation of MIMO Flat Fading Channels with Frequency Offsets[J].{H}IEEE Transactions on Signal Processing,2003,(03):602-613.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部