期刊文献+

材料设计的晶核法 被引量:1

CRYSTAL NUCLEUS METHOD FOR MATERIAL DESING
原文传递
导出
摘要 采用逆均匀化方法优化设计具有特定性能的材料的微结构时,初始设计的选择和优化迭代算法的收敛相当困难.在人工培养晶体时,常常放入籽晶以加速晶体的生长.论文模拟这一物理过程,提出了构造初始设计的晶核法.在描写晶核法后,讨论了算法中的几个问题,包括采用SIMP模型时弹性模量插值中幂指数的取值,晶核法密度过滤影响域的选取方法,晶核位置对指定性能材料设计优化微结构的影响,指定性能材料设计时目标函数的选取方式.从晶核法构造的初始设计出发,结合上列方法,对指定性能和极值性能材料的设计,给出了多个算例,表明了本文方法的有效性. When designing material with specified properties using the method of inverse homogenization,it is difficult to determine the initial density distribution of design domain and make the optimization algorithm to converge.Crystallon usually is used to accelerate crystal's growth when making cultured crystal.Inspired from this physical process,a new method called as crystal nucleus method was proposed to determine the initial density distribution.After description on the conception of crystal nucleus method,some issues about this method were discussed in detail.These issues included how to determine the value of power exponent in SIMP model,how to select the filtering domain,the influences of the position of crystal nucleus and the type of objective function on the optimal microstructrure of material with specified properties.Several examples of material design with described and extreme properties validated the effectiveness of crystal nucleus method.
出处 《固体力学学报》 CAS CSCD 北大核心 2010年第4期369-378,共10页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金重大研究计划重点项目(90816025) "973"国家重点基础研究发展计划项目(2009CB724303)资助
关键词 材料设计 逆均匀化 晶核法 密度幂指数 material design inverse homogenization crystal nucleus method density power exponent
  • 相关文献

参考文献20

  • 1Bendsoe M P,Kikuchi N.Generating optimal topologies in structural design using a homogenization method[J].Computer Methods in Applied Mechanics and Engineering,1988,71(2):197-224.
  • 2Bendsoe M P.Optimal shape design as a material distribution problem[J].Structural Optimization,1989,1(4):193-202.
  • 3Zhou M,Rozvany G I N.The COC algorithm part II:topological,geometrical and generalized shape optimization[J].Computer Methods in Applied Mechanics and Engineering,1991,89(1-3):309-336.
  • 4Mlejnek H P,Schirrmacher R.An engineer's approach to optimal material distribution and shape finding[J].Computer Methods in Applied Mechanics and Engineering,1993,106(1-2):1-26.
  • 5Wang M Y,Wang X,Guo D.A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246.
  • 6Allaire G,Jouve F,Toader A M.Structural optimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2004,194(1):363-393.
  • 7Xie Y M,Steven G P.A simple evolutionary procedure for structural optimization[J].Computers & Structures,1993,49(5):885-896.
  • 8Sigmund O.Design of Material Structures Using Topology Optimization[D].Technical University of Denmark,1994.
  • 9Sigmund O.A new class of extremal composites[J].Journal of the Mechanics and Physics of Solids,2000,48(2):397-428.
  • 10Svanberg K.The method of moving asymptotes-a new method for structural optimization[J].International Journal for Numerical Methods in Engineering,1987,24(2):359-373.

二级参考文献25

  • 1Rodrigues H, Fernandes P. A material based model for topology optimization of thermoelastic structures. Int J Numerical Methods in Engineering, 1995, 38:1951-1965.
  • 2Li Q, Steven GP, Xie YM. Displacement minimization of themoelastic structures by evolutionary thickness design. Computer Methods in Applied Mechanics Engineering, 1999, 179:361-378.
  • 3Cho S, Choi JY. Efficient topology optimization of thermo-elasticity problems using coupled field adjoint sensitivity analysis method. Finite Elements in Analysis and Design, 2005, 41:1481-1495.
  • 4Rozvany GIN. Basic geometrical properties of exact optimal composite plates. Computers and Structures, 2000, 76: 263-275.
  • 5Rozvany GIN. Exact analytical solutions for some popular benchmark problem in topology optimization. Structural Optimization, 1998, 15:42-48.
  • 6Zhang WH, Fleury C. A modification of convex approximations methods for structural optimization. Computers and Structures, 1997, 64:89-95.
  • 7Stolpe M, Svanberg K. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization, 2001, 22:116-124.
  • 8Bendsoe MP, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69:635-654.
  • 9Stolpe M, Svanberg K. On the trajectories of penalization methods for topology optimization. Structural and Multidisciplinary Optimization, 2001, 21:140-151.
  • 10Sigmund O. Design of material structures using topology optimization [D]. Denmark: Technical University of Denmark, 1994.

共引文献6

同被引文献24

  • 1刘书田,程耿东.基于均匀化理论的复合材料热膨胀系数预测方法[J].大连理工大学学报,1995,35(4):451-457. 被引量:31
  • 2刘涛,邓子辰.考虑材料设计变量的热-固耦合结构的优化设计[J].固体力学学报,2006,27(4):374-378. 被引量:8
  • 3刘岭,阎军,程耿东.考虑内部胞元能量等效的代表体元法[J].固体力学学报,2007,28(3):275-280. 被引量:5
  • 4H. Rodrigues,J.M. Guedes,M.P. Bendsoe.Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization . 2002 (1)
  • 5Jefferson G,Parthasarathy T A,Kerans RJ.Tailor-able thermal expansion hybrid structures. Interna-tional Journal of Solids and Structures . 2009
  • 6Wang B,Yan J,Cheng G D.Opti mal Structure De-sign with Low Thermal Directional Expansion andHigh Stiffness. 8th World Congress on Structuraland Multidisciplinary Opti mization . 2009
  • 7Studart A R,Gonzenbach U T,Tervoort E,Gauck-ler L J.Processing routes to macroporous ceramics:Areview. Journal of the American Ceramic Socie-ty . 2006
  • 8G. D. Cheng.On Non-Smoothness in Optimal Design of Solid Elastic Plates. International Jornal of Solids and Structures . 1981
  • 9A-J Wang,DL McDowell.In-plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater Technol, Trans ASME . 2004
  • 10MM Neves,H Rodrigues,JM Guedes.Optimal design of periodic linear elastic microstructures. Computers and Structures . 2000

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部