摘要
研究了一类具有离散和分布时滞的恒化器模型,得到了时滞对系统稳定性的影响:当时滞小于临界值时,正平衡点是局部渐近稳定的;当时滞经过临界值时,时滞破坏了正平衡点的稳定性,Hopf分支产生了一族经过正平衡点的周期解,并通过数值仿真验证了结果.
A chemostat model with a discrete and a distribution delays is investigated. The effect of the delay for the system is obtained. When the delay as bifurcation parameter is less than the threshold, the positive equilibrium is locally asymptotic stable. When the delay crosses the threshold, the hopf bifurcation destroys the stability of the positive equilibrium, a family of periodic solution is produced by Hopf bifurcation. Finally, the results are carried out by the numerical simulation.
出处
《宁夏师范学院学报》
2010年第3期23-28,共6页
Journal of Ningxia Normal University
基金
"十一五"国家科技支撑计划项目(2007BAD33B081)
关键词
时滞
恒化器
HOPF分支
稳定性
周期解
Delay
Chemostat
Hopf bifurcation
Stability
Periodic solution