摘要
对表面粘贴压电元件的压电智能悬臂梁进行有限元建模和分析,获取了结构的动力响应数据。根据神经网络的非线性逼近能力,用动态递归神经网络对压电振动系统进行了系统辨识,建立了系统的预测模型。以此预测模型来代替传统广义预测控制算法中的受控自回归积分滑动平均模型,对压电智能悬臂梁进行振动主动控制的研究,并优化了控制系统参数。对一单输入单输出压电智能悬臂梁系统进行了仿真分析,控制效果良好,为智能算法在智能结构中应用有一定的指导意义。
Piezoelectric sensors or actuators are bonded to the surfaces of a flexible cantilever beam.The finite element method is used to build the model of the beam.The dynamic response data of the piezoelectric smart structures is obtained through the FEM analysis.According to the nonlinear approximation capability of neural networks,a dynamic recursive BP neural network is used to identify the piezoelectric vibration system,and the predictive model is built.On the basis of the neural network predictive model,the generalized predictive control algorithm is proposed to control the piezoelectric vibration system and to suppress the undesired vibration of the structures.Simulation results demonstrate the excellent performance of the developed control system.It has some significance for guiding the application of intelligent control algorithms in smart structures.
出处
《噪声与振动控制》
CSCD
北大核心
2010年第4期144-149,共6页
Noise and Vibration Control
基金
邯郸市科学技术研究与发展计划项目(0921120069)
河北省教育厅科学研究计划项目(2009416)
关键词
振动与波
智能结构
仿真分析
广义预测控制
神经网络
vibration and wave
smart structures
simulate analysis
the generalized predictive control algorithms
neural network