期刊文献+

锻造多属性有条件相容并行组批优化 被引量:2

Parallel batching optimization with multi-attribute &compatible job in forging
下载PDF
导出
摘要 针对锻造行业存在的多阶段、工件有条件相容、不确定加工时间、以最小化拖期和完工时间为目标优化的组批和排序问题,提出了基于工件模糊聚类的两种算法。算法1的工件优先级由工件熵值、工件松弛时间重要度、市场意志共同决定,批的优先级由批内最高优先级工件决定;算法2为随机密钥代表混合遗传算法,该算法用随机密钥进行编码和解码,采用基于规则编码的方法来优化基因序列和基于规则的交叉操作,采用小生境技术来调整个体适应度,采用精英保留策略产生下一代。数值实验结果表明,在多品种、高负荷下,混合遗传算法好于算法1,算法1好于其他启发式算法。 Motivated by forge operation in a multi-layer production line whose jobs with uncertain process time in forge phase were processed simultaneously as a batch under certain condition,the objectives of minimizing the total tardy number of jobs and the total tardiness,two job-clustering-based algorithms were presented.In the first algo-rithm,the job priority was decided by process entropy of job,slacking importance of job and market will.And the batch priority was determined by the job with the highest priority in the batch.In the second algorithm,random keys were used to represent hybrid genetic algorithm,and random keys represent was adopted to perform coding and decoding.To solve practical big-size problems in a reasonable computational time,a rule coding method was adopted to optimize the gene sequence and crossover was also operated by anther rule.Niche technology was used to adjust the individual fitness,and elitist strategy was adopted to create next generation.Numerical experimental results showed that the hybrid genetic algorithm was better than the first algorithm,and the first algorithm was better than the other heuristic algorithms.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第8期1679-1687,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(70801036) 南京迪威尔ERP开发资助项目 南京工业大学学科基金资助项目~~
关键词 锻造计划 多阶段组批 并行机 启发式算法 遗传算法 重构 forging planning multi-layer batch parallel machine heuristic algorithm genetic algorithms recon-struction
  • 相关文献

参考文献10

  • 1张玉忠,曹志刚.并行分批排序问题综述[J].数学进展,2008,37(4):392-408. 被引量:13
  • 2AHMADI J H,AHMADI R H,DASU S,et al.Batching and scheduling jobs on batch and discrete processors[J].Operations Research,1992,40(4):750-763.
  • 3GURNANI H,ANUPINDI R,AKELLA R.Control of batch processing systems in semiconductor wafer fabrication facilities[J].IEEE Transactions on Semiconductor Manufacturing,1992,5(4):319-328.
  • 4BHATNAGAR R,CHANDRA P,LOULOU R,et al.Order release and product mix coordination in a complex PCB manufacturing line with batch processors[J].International Journal of Flexible Manufacturing Systems,1999,11 (4):327-351.
  • 5ERRAMILLI V,MASON S J.Multiple orders per job batch scheduling with incompatible jobs[J].Annals Operation Research,2008,159 (1):245-260.
  • 6WANG Chengshuo,UZSOY R.A genetic algorithm to minimize maximum lateness on a batch processing machine[J].Computer & Operation Research,2002,29(2):1621-1640.
  • 7GONG H,TANG Lixin,DUIN C W.A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times[J].Computers & Operations Research,2010,37(5):960-969.
  • 8WANG Huimei,CHOU F D.Solving the parallel batch-processing machines with different release times,job sizes,and capacity limits by metaheuristics[J].Expert Systems with Applications,2010,37(2):1510-1521.
  • 9ZHENG Rui,LI Hongyu.Minimizing total weighted completion time on a batch-processing machine with re-entrance[C] //Proceedings of the IEEE International Conference on Automation and Logistics.Washington,D.C.,USA:IEEE,2009:1791-1794.
  • 10WANG Chengshuo,UISOY R.A genetic algorithm to minimize maximum lateness on a batch processing machine[J].Computers and Operations Research,2002,29(12):1621-1640.

二级参考文献15

共引文献12

同被引文献33

  • 1BITRAN G R, HAAS E A, HAX A C. Hierarchical produc- tion planning: a single stage system[J]. Operation Research,1981,29(4):717-743.
  • 2BITRAN G R, HAAS E A, HAX A C. Hierarchical produc- tion planning: a two-stage system[J]. Operation Research, 1982,30(2) : 232-251.
  • 3BOWERS M R, JARVIS J P. A hierarchical production plan- ning and scheduling model[J]. Decision Sciences, 1992,23 ( 1 ) : 144-159.
  • 4MEYBODI M Z. Integrating production activity control into a hierarchical production-planning model[J]. International Jour- nal of Operations and Production Management, 1995, 15 (5): 4-25.
  • 5KRAUS S. Negotiation and cooperation in multi-Agent envi- ronments[J]. Artificial Intelligence, 1997,94(1/2) :79-97.
  • 6LESSER V R. A retrospective view of FA/C distributed prob- lem solving[J]. IEEE Transactions on Systems, Man and Cy- bernetics, 1991,21(6) : 1347-1363.
  • 7LEVESQUE H J. All I know: a study in auto-epistemic logic [J]. Artificial Intelligence,1990,42(2/3):263-309.
  • 8GROSZ B J, KRAU S. Collaborative plans for complex group activities[J]. Artificial Intelligence, 1996,86(2) :69-357.
  • 9SMITH R G. The contract net protocol high-level communica- tions and control in a distributed problem solver[J]. IEEE Transactions on Computers, 1980,29(12) :1104-1113.
  • 10DURFEE E H, LESSER V R. Using partial global plans to coordinate distributed problem solvers[C]//Proceedings of the 10th International Joint Conference on Artificial Intelli- gence. San Francisco, Cal. , USA: Morgan Kaufmann, 1987: 875-883.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部