期刊文献+

一类二阶非线性差分方程组的动力学

The Dynamics for a Class of Second Order Nonlinear Difference Equations
下载PDF
导出
摘要 研究了二阶非线性差分方程组xn+1=(2yn-1+yn/yn+1) yn+1=(2xn-1+xn/xn-1),x-1,x0,y-1,y0∈(0,+∞)的动力学性质,包括有界性、周期性、局部渐近稳定性和振荡性. The paper discusses the dynamics of a system of difference equations xn+1=(2yn-1+yn/yn+1) yn+1=(2xn-1+xn/xn-1),x-1,x0,y-1,y0∈(0,+∞) Which includes boundedness,period,locally asymptotic stability and oscillation.
作者 全卫贞
出处 《五邑大学学报(自然科学版)》 CAS 2010年第3期10-13,共4页 Journal of Wuyi University(Natural Science Edition)
基金 广东省自然科学基金资助项目(07301595)
关键词 差分方程组 平衡解 素二周期解 局部渐近稳定 振荡 system of difference equations equilibrium point solution of prime period two locally asymptotic stability oscillation
  • 相关文献

参考文献7

  • 1BERENHAUT K S, FOLEY J D, STEVIC S. Quantitative bound for the reeursive sequence Yn+1 =Xn/Xn-k[J]. Journal of Difference Equations and Applications, 2003, 9(8): 721-730.
  • 2KOSMALA W A, KULENOVIC M R S, LADAS G, et al. On the recursive sequence yn+1=(P+Yn-1)/ (qyn + yn-1) [J]. Journal of Mathematical Analysis and Applications, 2000, 251: 501-532.
  • 3DEVAULT R, KENT C, KOSMALA W A. On the recursive sequence Xn+1=p+xn/xn-k[J]. Journal of Difference Equations and Applications, 2003, 9(8): 721-730.
  • 4KULENOVIC M R S, LADAS G. Dynamics of second order rational difference equations [M]. Chapman & Hall: CRC, 2002.
  • 5王丽丽.差分系统正解的全局渐近性[J].太原科技大学学报,2008,29(4):317-318. 被引量:1
  • 6袁晓红,晏兴学,苏有慧.一类有理差分方程的周期性和振动性[J].河西学院学报,2009,25(2):7-13. 被引量:5
  • 7马学敏.一类高阶差分方程的定性研究[J].株洲师范高等专科学校学报,2007,12(2):28-30. 被引量:1

二级参考文献15

  • 1V.L.Kocic,G.Ladas,Global Behavior of Nonlinear Difference Equation of Higher Order with Applications[M].Kluwer Academic,Dordrecht,1993.
  • 2Yonghong Fan,Linlin Wang,Wantong Li.Global Behavior of a Higher Order Nonlinear Difference Equations[J].Journal of Mathematical Analysi and Applications.2004,299(1):113-126.
  • 3PAPASCHINOPOULOS G ,PAPASCHINOPOULOS B K. On the fuzzy difference equation xn+1 = A +xn/xn-m[J]. Fuzzy Sets and Systems,2002, 129 : 73 -81.
  • 4CAMOUZIS E,PAPACHINOPOULOS G. Global asymptotic behavior of positive solutions on the system of rational difference equafions xn+1=1+xn/yn-m, yn+1=1+yn/xn-m[ J]. Applied Mathematics Letters, 2004, 17:733-737.
  • 5ABU-ASRIS R M,DEVAULT R. Global stability of yn+1=A+yn/yn-k[ J ]. Applied Mathematics Letters, 2003,16 : 173-178.
  • 6K.S.Berenhaut,J.D.Foley,S.Stevic.The global attractivity of the rational difference equationyn=1+yn-k[].Proceedings of the American Mathematical Society.2007
  • 7S.Kalabusic,,M.R.S.Kulenovic,C.B.Overdeep.Dynamics of the Recursivesequence xn=-1-k+1[].JDifferEquations ApplBxn-l+Dxn-k.2004
  • 8Amleh,A.,Grove,E.,Ladas,G.,Georgiou,G.On the recursive sequence$$x_{n + 1} = \alpha + \frac{{x_{n - 1} }}{{x_n }}$$[].Journal of Mathematical Analysis and Applications.1999
  • 9Berenhaut K,Foley J,StevicS.Quantitative bound for the recursive sequence yn+1=A+yyn-nk[].Applied Mathematics Letters.2006
  • 10E. A. Grove,,G. Ladas.Periodicities in nonlinear difference equations[]..2005

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部