期刊文献+

因变量缺失下部分线性变系数变量含误差模型的估计 被引量:6

Estimation in Partially Linear Varying-Coefficient Errors-in-Variables Models with Missing Responses
下载PDF
导出
摘要 该文主要考虑部分线性变系数模型在自变量含有测量误差以及因变量存在缺失情形下的估计问题.基于Profile最小二乘技术,针对参数分量和非参数分量提出了多种估计方法.第一种估计方法只利用了完整观测数据,而第二种和第三种估计方法分别利用了插补技术和替代技术.参数分量的所有估计被证明是渐近正态的,非参数分量的所有估计被证明和一般非参数回归函数的估计具有相同的收敛速度.对于因变量的均值,构造了两类估计并证明了它们的渐近正态性.最后,通过数值模拟验证了所提方法. This paper considers the estimation of partially linear varying-coefficient models, which are useful extensions of varying coefficient models and partially linear models. The author focuses on the case where some covariates are measured with additive errors and the response variable is sometime missing. A class of estimators for the parametric component as well as nonparametric components based on the profile least-squares approach are proposed. The first estimator is constructed by using complete-case observations only, the other two by using simple imputation or replacement techniques respectively to complete the sample. All the proposed estimators for the parametric component are shown to be asymptotically normal, and the estimators of nonparametric component achieve the optimal strong convergence rate of the usual nonparametric regression. For the mean of response variable, two estimators are constructed and their asymptotic normalities are established. Simulation studies are conducted to illustrate the approach.
作者 魏传华
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第4期1042-1054,共13页 Acta Mathematica Scientia
基金 国家社科基金(07CTJ003) 中央民族大学"211工程"项目(021211030312)资助
关键词 部分线性变系数模型 变量含误差 缺失数据 Profile最小二乘 渐近正态 Asymptotic normality Measurement error Missing data Partially linear varyingcoefficient model Profile least-squares approach.
  • 相关文献

参考文献17

  • 1Hastie T, Tibshirani R. Varying-coefficient models (with discussion). Journal of the Royal Statistical Society, 1993, 55B: 757-796.
  • 2Engle R F, Granger W J, Rice J, et al. Semiparametric estimates of the relation between weather and electricity sales. J Amer Statist Assoc, 1986, 80:310-319.
  • 3Zhang W, Lee S, Song X. Local polynomial fitting in semivarying-coefficient model. J Multivar Anal, 2002, 82:166-188.
  • 4Zhou X, You J. Wavelet estimation in varying coefficient partially linear regression models. Statist Probab Lett, 2004, 68:91- 104.
  • 5Xia Y, Zhang W, Tong H. Efficient estimation for semivarying-coefficient models. Biometrika, 2004, 91: 661 -681.
  • 6Ahmad I, Leelahanon S, Li Q. Efficient estimation of semiparametric partially linear varying coefficient model. Ann Statist, 2005, 33:258-283.
  • 7Fan J, Huang T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 2005, 11:1031- 1057.
  • 8You J, Chen G. Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model. J Multivar Anal, 2006, 97:324- 341.
  • 9Ali M, Abu-Salih M. On estimation of missing observations in linear regression models. Sankhya Indian J Statist, 1988, 50:404-411.
  • 10Cheng P. Nonparametric estimation of mean functionals with data missing at random. J Amer Statist Assoc, 1990, 89:81-87.

同被引文献45

  • 1Tibshirani R. Regression shrinkage and selection Via the lasso[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58(1): 267-288.
  • 2Fan J, Li.R. Variable selection Via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360.
  • 3Zou H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Associ- ation, 2006, 101(476): 1418-1429.
  • 4Fan J, Huang T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models[J]. Bernoulli, 2005, 11(6): 1031-1057.
  • 5You J, Chen G. Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model[J]. Journal of Multivariate Analysis, 2006, 97: 324-341.
  • 6Zhou Y, Liang H. Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates[J]. The Annals of Statistics, 2009, 37(1): 427-458.
  • 7Li R, Liang H. Variable Selection in semiparametric regression modeling[J]. The Annals of Statistics, 2008, 36(1): 261-286.
  • 8Zhao P, Xue L. Variable selection for semiparametric varying coefficient partially linear errors-in- variables models[J]. Journal of Multivariate Analysis, 2010, 101: 1872-1883.
  • 9Wang H, Zou G, Wan A. Adaptive lasso for varying-coefficient partially linear measurement error models[J]. Journal of Statistical Planning and Inference, 2013, 143: 40-54.
  • 10Chu C, Cheng P. Nonparametric regression estimation with missing data[J]. Journal of Statistical Planning and Inference, 1995, 48: 85-99.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部